#6AN da distanza Triangolare a Cauchy-Schwartz’s Inequality


La diseguaglianza triangolare dice che la somma dei due cateti sarà sempre maggiore o al massimo uguale all’ipotenusa. in R

||x+y||  ≤ ||x||+||y|| 

la norma (la distanza) dell’addizione ≤ l’addizione delle norme (le distanze)

anche nel campo complesso C

|z1+z2| ≤ |z1|+|z2|

La condizione di Cauchy-Schwartz è una diseguaglianza che assomiglia formalmente alla triangolare ma non nel significato perché all’interno dobbiamo considerare il prodotto scalare tra vettori (non prodotto vettoriale!!!) ed il coseno dell’angolo compreso. Tutto questo per far capire che dobbiamo immaginare la distanza un poco meno del prodotto scalare dei due vettori e ruotata dell’angolo tra loro

detto questo come si dimostra che l’espressione qui sotto è vera per a e b vettori?

ab ≤ |a||b|cosα

|ab| = ||a||b|cosα|    elevo a modulo sia a dx che sx 

ora so che |cosα| prende solo valori positivi tra 0<x<1 esattamente tra 0<x<π/2 e 3/2<x<2π
e moltiplicando per un valore che oscilla tra 0 ed 1 vuol dire al massimo ottenere

ab  = |a||b|cosα         oppure          ab  <  |a||b|

Messaggio Non-Euclideo


Ieri sera stavo seduto sul terrazzino ed all’improvviso ho notato questo triangolo nel cielo e mi sono immaginato se da fuori fosse stato così piano come da “dentro”:

img_20180802_1938221733375567.jpg

si noti bene il triangolo nel cielo – foto scattata alle ore 19:22 del 02/08/2018

IMG_20180803_095856

IMG_20180803_100740

Bibliografia: l’equazione di Dio – Amir D.Aczel