#E4 – An – Funzioni, Successioni con 2 Carabinieri: fuNerali Astratt1


IMG_20181209_164524

  1. questa successione ha come numeratore la parte intera [] di logx che è una funzione che associa ad ogni x∈R la sua parte intera minore o uguale in N (es: 2,3=2.  4,8=4. 3=3). 
    Detto questo sostituisco all’intera la lettera q che elevata alla n mi identifica la funzione di entità geometrica.
    Sappiamo inoltre che per sapere se una successione converge dobbiamo mettere il modulo <1 (attenzione il modulo e non la serie stessa perché consideriamo sempre i valori positivi della funzione).
  2. sviluppando questo tipo di ragionamento, mettendo sia il modulo positivo che negativo della serie <1, ottengo che la [funzione] esiste in (-2,2) esclusi perché il 2 al denominatore l’ho portato su sia a dx che a sx
  3. se il log di x(argomento) è in base e ⇒ x è compreso tra e elevato alla -1 e 2 visto che la parte intera -1 (eˆ-1 = 1/e = 1/2,71828 … =0,367879 …) 

img_20181209_164524-e1544372973369.jpg
IMG_20181209_164524
img_20181209_1645242.jpg

  1. 4) per q≠0 e 1 direi anche posso verificarne la somma. infatti la q la posso scomporre in prodotto di due q sommandone gli esponenti
  2. 5) qˆn lo posso portare fuori dalla sommatoria lasciando sotto qˆm. In realtà questo passaggio di mezzo potrebbe fuorviare l’attenzione, ma basta guardare che il qˆk che moltiplica la sommatoria di un (q)ˆn-k dà esattamente ciò che c’è scritto nel punto 6; è un po’ come fare (2)ˆ2 = (2)ˆ3-1!
  3. 6) quindi prendo in considerazione soltanto le sommatorie che da n=2→∞ e cioè quella che mi definisce il limite della serie.

Esercizi 2 e 3

img_20181209_164551-e1544377813300.jpg

  1. ricorda vagamente il limite notevole di e quindi la serie stessa sembra suggerirmi la strada. per prima cosa ribalto 2/n ottenendo il reciproco; poi scompongo n=1*n= n/2*2/n (che fa 1) * n
  2. a questo punto i giochi son fatti perché per ottenere e basta avere sia al denominatore che all’esponente la stessa cifra
  3. infatti eˆ(2/n)*n = eˆ2 😉

img_20181209_1645511.jpg

  1. sembra che tutta la successione vada a +∞ ma in questo limite, dove so che n tende a +∞ il termine da studiare è senza dubbio sinπ, che è una funzione che sta tra [-1,1]
  2. capito il contesto in cui agire i famosi 2 carabinieri mi portano il lim della mia funzione sinπ →0 

img_20181209_201340.jpg

  1. A) per k=1 la successione tende a 1 e non a 0 (n/n) quindi non converge
  2. B) per k=3 invece con il criterio dell’assoluta convergenza, che grazie al valore assoluto elimino l’elemento disturbante (-1)ˆn, riesco a determinarne l’assoluta convergenza con il confronto asintotico
  3. C) il caso k=2 è particolare, perché sostituendolo mi risulterebbe un confronto asintotico che mi porta la successione a divergere verso +∞. In questo caso posso chiamare in causa il criterio di Leibniz la cui presente successione ne rispetta i presupposti:
    – An→0, per n→+∞
    – An≥0ora devo solo porre An+1 ≤ An ed i calcoli mi portano ad un risultato definitivamente positivo, cioè oltre al Δ/2 della formula finale dove la successione converge debolmente a +∞. 😉

Corriere della Sera

La Luna Poetica…


img_20180715_192645.jpg

Corriere della Sera

Ci vogliono 20 minuti ….

Il Pensiero è Positivo od anche il Percorso più Probabile?


Un evento per far si che si verifichi bisogna saperne l’aleatorietà? Il calcolo delle probabilità ci rassicura a riguardo e malgrado la nostra ansia, se puntassimo simultaneamente su due casistiche opposte, avremmo come risultante una vittoria = 1, es, testa o croce, pari o dispari ecc.

cropped-friedrich.jpgNei casi in cui avessimo n > 2 casistiche bisognerebbe vederne la posta in gioco se (f)avorevole o (s)favorevole secondo la formula

f*v – s*p / f+s 

Se tale espressione valesse 0 allora la (v)incita sarebbe equilibrata es:

Tiro 2 dadi da 6 e punto sull’uscita di un numero x >10, a quanto dovrebbe ammontare la ricompensa se ciò accadesse?
Per prima cosa abbiamo 6² = 36 casistiche dove 6 sono favorevoli e 30 sfavorevoli

img_20180624_220449.jpg

va da se che sostituendo alla formula i numeri verrebbe

6*1 – 30*1 / 6+30 = -2/3   →   -66% 

v = 5 darebbe il rapporto 5:1 come neutro e logico, e di conseguenza se puntassimo 1 su x >10 ed 1 su x <10 avremmo comunque una vincita >0 in quanto probabile che eventi possibili e favorevoli si verifichino, perciò Probabilità P(E) >0

è vero che la probabilità P della somma di eventi E e G è uguale alla somma delle rispettive probabilità allora

P(E + G)   =    P(E) + P(G)

dove spesso ci troviamo a puntare su più di una casistica contemporaneamente, es: 1×2 della schedina ed è utile dire che le probabilità mutano grazie alla seguente espressione

P = f / f+s 

così come vittoria e perdita → p/v+p. Se ponessimo l’uguaglianza v/ p+v = f/ f+s allora avremmo davanti non solo la scommessa ma anche il compenso e nella sua composizione Probabilistica.

C’è un quesito storico che fu oggetto di vari approcci risolutivi il quale trovò ampio consenso nella risoluzione da parte di Pierre Fermat (1623 – 1662) e Nicolò Tartaglia (1499 – 1557) e che parla di 2 scommettitori e sull’interruzione di una partita svolta nel puntare in totale 24 monete (12+12) su un banale testa o croce. La partita si interrompe a 6 lanci su 9 totali lasciando il risultato di 4-2 vittorie di X nei confronti di Y; la domanda chiedeva quali e quante fossero le probabilità, nonché il guadagno per ogni casistica se avessero finito la partita?

img_20180625_145139.jpg

La tabella riassume tutte le opzioni dei lanci futuri riassunti nel punteggio che per ovvie ragioni non andrebbe al di là del 5; avremmo 4 colone per 5-2, 2 colonne per 5-3 e una sola per 4-5 e 5-4, quindi su un totale di 2³=8 casistiche un 50% di 5-2, un 25% di 5-3 ed un 12,5% per 4-5 e 5-4 per un totale di 4 esiti finali.
Ora tralasciamo i lanci dal 1 al 6 e concentriamoci sugli ultimi 3 (7,8,9). Abbiamo messo 3 come esponente di 2 possibili condizioni cioè testa o croce giusto? Ma allora questo 2³=8 che cos’è? è la sommatoria ∑ dei coefficienti binomiali disposti in maniera probabilistica ma sempre in ugual numero.

img_20180625_153341.jpg

i coefficienti del cubo di un binomio (a+b)³ nello specifico ma in generale nel famoso quadrato di Tartaglia.
Ma quante monete spettano ad X ed Y ad ogni casistica? partiamo dal fondo a partita finita:

  • al ^9 tiro corrispondono le ultime due colonne 4-5 e 5-4 dove le 24 monete vano a X o Y
  • all’^8 tiro eseguito avremmo un 4-4 dove 12 monete vanno a ad X e 12 vanno a Y, oppure 5-3 dove tutte e 24 andrebbero a X. Ancora prima, quindi salendo a sinistra incontriamo un 4-3 dove comunque a X vanno 12 monete ma ad Y 12/2 = 6 e le restanti 6 a X perché in questo caso il tiro non è stato ancora effettuato. Ricapitolando: X=18 ed Y=6 
  • al ^7 tiro abbiamo il nodo 4-2 dove se si fa 5-2 ad X vanno 24, 4-3 si danno 18 a X e 6 a Y ma se venisse interrotto prima cioè a punteggio 4-2 (quindi il ^6 tiro) ad X andrebbero  18 sicure + 6/2=3 quindi 21 monete a 3 per X.

img_20180625_191734.jpg

il dividere per due indica l’aleatorietà dell’uomo che calcola al 50% la probabilità di un risultato in assenza di variabili di percorso lasciando una sensazione di intelligente ignoranza matematica perché in fondo … nulla è esatto quanto prevedibile.

bibliografia

la matematica dell'incertezza - Marco Li Calzi

 

#14A Teorema di Hartogs


Questo teorema ci garantisce che abbiamo |S|≤ |T|  oppure  |T|≤ |S|. Se sono vere entrambe allora |S|=|T| (Teorema di Cantor)

Prendiamo una famiglia F di funzioni che da A vanno a T come nel seguente schema, dove A ⊆ B ⊆ S. Risulta ovvio che la relazione d’ordine jA < JB possano rappresentare funzioni identiche per ogni a ∈ A.

Ora prendiamo in considerazione B come insieme ∪ di tutti i sottoinsiemi Bi ∀i ∈ I, quindi i,k,j,d,r ..etc in modo che questi formino una catena in F. Il discorso è il medesimo come sopra: una relazione d’ordine data dalle funzioni dei rispettivi insiemi verso T; l’unica differenza sta nella Catena stessa che rende Induttivo tutta F in quanto ammette almeno un maggiorante jB > jBi

img_5760.jpg

Allora per Zorn  se si ha un maggiorante si ha anche elementi massimali al suo interno, quindi ipotizziamo per assurdo di avere un massimale x° all’esterno di S trasformando quindi jB = T in B’ = jB ∪ x° = T

Per avere una funzione iniettiva da T → S avremmo bisogno dell’ assioma della scelta che mi sceglie un massimale che per assurdo sarebbe fuori da S dandomi una funzione d’ordine jB < jB° e contraddicendomi la massimalità di jB per l’insieme B 

Tutto è incentrato sulla relazione d’ordine e sulle catene formatesi all’interno di S.
Prendiamo in considerazione i numeri naturali N. L’insieme A={3,4,5,6} e B={2,3,4,5,6,7,8,9}; se formo una catena C={{1},{1,2},{1,2,3},{1,2,3,4} ecc } avrò per Zorn sicuramente un insieme con elementi maggioranti tra loro ed altrettanti massimali come per esempio tra E={1,2,3,} e F={1,2,3,4,5,6} ho come maggiorante M={3,4,5,6} ed il massimale ∈ E={3}.

Tutte queste scelte rispettano intrinsecamente una relazione d’ordine  e nel teorema di Hartogs riferendosi alle cardinalità degli insiemi presi in considerazione.

Bibliografia 
Dikran Dikranjan 
Maria Silvia Lucido – Aritmetica e Algebra 
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica 
Marco Manetti - Topologia

 

 

#A8-#E


IMG_5746

Nel primo esercizio basta notare le analogie che stanno nell’uguaglianza dei due coefficienti per capire che forse è inutile stare a trasformare le permutazioni, quindi bastano pochi passaggi algebrici per capire che la soluzione è più vicina di quanto sembri

Nel secondo esercizio le condizioni di esistenza devono essere x≥4, quindi al primo passaggio sostituiamo la formula base coi valori dei seguenti coefficienti binomiali. Poi permutiamo il 4 al primo denominatore così lo si elimina; sotto permutiamo invece la serie x! per eliminare il (x-4)! sempre al den., mentre al di là dell’uguale facciamo lo stesso con (x-3)!
semplifichiamo algebricamente i fattori comuni, moltiplichiamo lo stesso denominatore *6 così lo possiamo eliminare per trovarci con un semplice passaggio ad x-3=5, x=8 che è ≥4 

img_5734-e1522265310583.jpg

Al primo passaggio attuiamo la sostituazione alla formula madre n! / k!(n-k)!. nb. la seconda freccia verde in alto: sostituzione di k-1 e n-1 alla k di (n-k)! risulta [n-1-(k-1)]! cioè  [n-1-k+1]! quindi (n-k)!

So che (n-k)! = (n-k)(n-1-k)! e sostituisco
so che k! = k(k-1)! e sostituisco

effettuo il denominatore comune al penultimo passaggio e semplificando mi ritrovo la formula iniziale n! / k!(n-k)!
uguaglianza verificata con successo

 

 

 

#3A composizione di Applicazioni


f: X —>Y e g: Y —>Z sono due applicazioni (o funzioni) dove Y coincide per f e g e la composizione, descritta dal simbolo °, si scrive così:

g ° f : X —> Z     per    (g°f)(x) = g(f(x)) per qualsiasi x in X

viene spesso chiamata applicazione prodotto perché è anche valevole in casi riflessivi sullo stesso insieme per cui f°(f°f) = (f°f)°f assume a tutti gli effetti come f^3 per la ovvia proprietà delle potenze.

 

Vediamo casi particolari in cui è valevole l’enunciato precedente f: X —>Y e g: Y —>Z:  

img_5607.jpg

  •   se g ed f sono suriettive allora anche g°f è suriettiva (a)
  •   se g ed f sono iniettive allora anche g°f è iniettiva (b)

img_5610.jpg

  • Il primo caso a sinistra abbiamo una funzione f : X —-> Y iniettiva e la sua inversa
    f^-1 = g : Y —-> X suriettiva. ciò è sempre possibile!
  • Nel secondo caso abbiamo un’identità dove la f : X —-> Y iniettiva ha una sua inversa g esattamente come lei. Da qui il particolare che se la f è biettiva (cioè sia suriettiva che iniettiva) allora tutta la funzione può essere invertibile.
  • Il primo caso se la f : X —-> Y è iniettiva allora anche la g°f è iniettiva; dove per ogni x,y appartenente all’insieme X abbiamo una f(x) = f(y) e di conseguenza una g(f(x)) = g(f(y)) = z
  • nel secondo caso se g : Y —-> Z è g(f(x)) ed è suriettiva. Se per ogni z appartenente a Z esiste una x appartenente a X tale che g°f(x)=g(f(x)), allora se f(x) soddisfa tutto l’insieme Y conferma così la suriettività dell’intero circuito perché g°f(x)=g(f(x)).
    Ne è un esempio anche il caso a) sopra illustrato

IMG_5624

  • prendendo come immagine mentale la foto sopraindicata sappiamo che la f(x)=y e la g(y)=x di conseguenza la g°f=id x e la f°g=id y 
  • la g°f = id x da non confondere con la g°f (x) perché altrimenti avremmo 3 insiemi come nei casi precedenti e non 2 
bibliografia
Dikran Dikranjan
Maria Silvia Lucido – Aritmetica e Algebra

#2A teorema di Cantor


Sia X un insieme non vuoto.
Cantor asserisce che non esiste nessuna f suriettivache verifichi la seguente funzione

f: X ——-> P(X)

ru-yev[1]

concetto preliminare: funzione suriettiva, cioè f(X) = Y, quindi che tutti gli elementi di Y hanno almeno una f^-1 che porti all’insieme X.

tesi: Esiste un sottoinsieme B appartenente a P(A) tale che gli elementi a appartenenti ad A non hanno una funzione f(a) in B

img_5605.jpg

ipotesi: ammettiamo che ogni b in B invece abbia una a – qui sopra rappresentata da una y – in A quindi che sia suriettiva: f(X) = Y 
allora:

  1. se b non appartiene a B (e quindi appartiene al resto di P(A)) con funzione in A allora esistono b in B, assurdo! dovevano essere per tesi senza funzione!
  2. se b appartiene a B con funzione in A allora non esistono in B, assurdo! Per tesi esistono e sono facenti parte di P(A)
bibliografia:
Dikran Dikranjan
Maria Silvia Lucido – Aritmetica e Algebra