#E4 – An – Funzioni, Successioni con 2 Carabinieri: fuNerali Astratt1


IMG_20181209_164524

  1. questa successione ha come numeratore la parte intera [] di logx che è una funzione che associa ad ogni x∈R la sua parte intera minore o uguale in N (es: 2,3=2.  4,8=4. 3=3). 
    Detto questo sostituisco all’intera la lettera q che elevata alla n mi identifica la funzione di entità geometrica.
    Sappiamo inoltre che per sapere se una successione converge dobbiamo mettere il modulo <1 (attenzione il modulo e non la serie stessa perché consideriamo sempre i valori positivi della funzione).
  2. sviluppando questo tipo di ragionamento, mettendo sia il modulo positivo che negativo della serie <1, ottengo che la [funzione] esiste in (-2,2) esclusi perché il 2 al denominatore l’ho portato su sia a dx che a sx
  3. se il log di x(argomento) è in base e ⇒ x è compreso tra e elevato alla -1 e 2 visto che la parte intera -1 (eˆ-1 = 1/e = 1/2,71828 … =0,367879 …) 

img_20181209_164524-e1544372973369.jpg
IMG_20181209_164524
img_20181209_1645242.jpg

  1. 4) per q≠0 e 1 direi anche posso verificarne la somma. infatti la q la posso scomporre in prodotto di due q sommandone gli esponenti
  2. 5) qˆn lo posso portare fuori dalla sommatoria lasciando sotto qˆm. In realtà questo passaggio di mezzo potrebbe fuorviare l’attenzione, ma basta guardare che il qˆk che moltiplica la sommatoria di un (q)ˆn-k dà esattamente ciò che c’è scritto nel punto 6; è un po’ come fare (2)ˆ2 = (2)ˆ3-1!
  3. 6) quindi prendo in considerazione soltanto le sommatorie che da n=2→∞ e cioè quella che mi definisce il limite della serie.

Esercizi 2 e 3

img_20181209_164551-e1544377813300.jpg

  1. ricorda vagamente il limite notevole di e quindi la serie stessa sembra suggerirmi la strada. per prima cosa ribalto 2/n ottenendo il reciproco; poi scompongo n=1*n= n/2*2/n (che fa 1) * n
  2. a questo punto i giochi son fatti perché per ottenere e basta avere sia al denominatore che all’esponente la stessa cifra
  3. infatti eˆ(2/n)*n = eˆ2 😉

img_20181209_1645511.jpg

  1. sembra che tutta la successione vada a +∞ ma in questo limite, dove so che n tende a +∞ il termine da studiare è senza dubbio sinπ, che è una funzione che sta tra [-1,1]
  2. capito il contesto in cui agire i famosi 2 carabinieri mi portano il lim della mia funzione sinπ →0 

img_20181209_201340.jpg

  1. A) per k=1 la successione tende a 1 e non a 0 (n/n) quindi non converge
  2. B) per k=3 invece con il criterio dell’assoluta convergenza, che grazie al valore assoluto elimino l’elemento disturbante (-1)ˆn, riesco a determinarne l’assoluta convergenza con il confronto asintotico
  3. C) il caso k=2 è particolare, perché sostituendolo mi risulterebbe un confronto asintotico che mi porta la successione a divergere verso +∞. In questo caso posso chiamare in causa il criterio di Leibniz la cui presente successione ne rispetta i presupposti:
    – An→0, per n→+∞
    – An≥0ora devo solo porre An+1 ≤ An ed i calcoli mi portano ad un risultato definitivamente positivo, cioè oltre al Δ/2 della formula finale dove la successione converge debolmente a +∞. 😉

#3AN Campo Ordinato Completo = R


Un campo è una struttura algebrica con una costante e due operazioni: (k,*,+)     ∀k∈K

che rispetta le seguenti proprietà: Associativa, Commutativa, Distributiva, Elemento Neutro. Un esempio di campo è l’insieme dei numeri razionali Q.

Ordinato perché possiede una relazione “<” che soddisfa le seguenti proprietà: 

Transitiva – se a<b e b<c ⇒ a<c    ∀a,b,c ∈ K,     ne segue che l’elemento neutro per la moltiplicazione “c>0∈N” non ne cambia la l’ordine

Se a≠b ⇒ a<b ∨ b<a

IMG_20180829_225532

Completo perché assume il teorema di completezza: se A⊂R (A• assunto come l’insieme dei maggioranti di R) Superiormente Limitato allora A• ha un minimo. Viceversa se (A∝ assunto come l’insieme dei minoranti di R) Inferiormente Limitato allora A∝ ha una massimo.

Dimostrazione:

  • Sia A⊂R, A sup lim: A•={x∈R :x≥a, ∀a∈A} ≠ ∅            (definizione dell’insieme dei maggioranti come non vuoto)
  • scelgo il minimo dei maggioranti di A• scegliendo la minima cifra tra 0 e 9 delle varie parti di cui è composto il numero: β = c0,c1 c2 c3 c4 c5 … ck-1, ck, xk+1,xk+2 ..
  • Prendo un’ipotetico numero σ = c0,c1 c2 c3 c4 c5 …ck……
  • confronto β e σ: se σ possiede una cifra a ck-1 = 9 allora per il teorema dei resti avremo un numero 9 periodico che ∉R in quanto ck-1,ck,xk+1,xk+2 ecc saranno 9 anche loro.
  • Per assurdo assumo che σ A• allora esiste un numero ϒ>σ t.c. la k-esima cifra di ϒk>ck, ma allora σ>β!! e non ho scelto il minimo elemento dell’insieme dei maggioranti!
  • quindi σ=β oppure le loro k-esime cifre sono ck<bk t.c. σ≤β
  • lo stesso procedimento è possibile affrontarlo con l’insieme dei minoranti

drops_water_water_drop_water_drops_blue_liquid_rain_clean-1276466.jpg!d

esempio

dimostrare che 1 è estremo superiore di A={∀n∈Q : (n-1)/n ≤1} o SupA=1

Sapendo che avere un estremo superiore vuol dire ammettere dei maggioranti; in questo caso da enunciato è esplicito che l’1 è il minimo dei maggioranti, ma per dimostrarlo vado per gradi.

Come prima domanda qual è la tesi dell’enunciato?

  • (n-1)/n ≤1 oppure SupA = 1

Se per ogni n appartenente a Q che sostituisco mi dà la disuguaglianza (n-1)/n≤1 allora 1 è il mio estremo superiore. E per dimostrarlo nego la tesi P.A. (per assurdo) dicendo che 1 non è SupA, quindi che Esiste un numero ε>0 che sottratto a 1 mi dà un’estremo superiore magari > (n-1)/n della seguente disuguaglianza:

1-ε   <(n-1)/n   ≤1

invece dopo opportuni calcoli mi risulta n>1/ε il che è sempre vero sempre perché stiamo all’interno dell’insieme Q dei razionali e conseguentemente

1/ε  <n  ≤1

1-ε è quell’elemento supposto massimo all’interno dell’insieme A e che sarà sempre minore di (n-1)/n per qualsiasi ε>0 io prenda. in altre parole avrò sempre un elemento massimo tra 1-ε ed 1 cioè (n-1)/n.

è il minore dei maggioranti? Sì perché se porto l’1 dentro all’insieme A: (n-1/n) – 1≤0 ottengo -1/n ≤0 sempre vero. Per quanto mi possa avvicinare ad 1 al massimo raggiungerò (n-1)/n per ogni n∈N.

#A11 -E2: Induzione Geometrica


un esempio facile di metodo di induzione visto dal punto di vista geometrico.

Si ha il seguente enunciato: Dimostrare che la somma degli angoli interni di un poligono di n lati equivale a (n-2)*180° angoli piatti. 

Riscriviamo la Proposizione P meglio:

  • P(n) = la somma degli angoli interni di un triangolo di n lati 
  • (n-2)*180 = angoli piatti

quindi abbiamo che P(n) = (n-2)*180 

  1. troviamo se P(0) è vera
    Se pensiamo al quadrato, come poligono di 4 lati e sostituiamo la n col 4 avremo
    (4-2)*180° = 2*180° = 360°
    Stessa cosa col pentagono, n = 5 avremo (5-2)*180 = 540° … ecc quindi banalmente per ogni sostituzione di n P(n) è sempre vera.
  2. Se P(n) vera ⇒ P(n+1) sarà vera?   Ipotesi (I)
  3. Quindi P(n+1) = P(n) + 180°, perché? Perché se aggiungo un lato al poligono iniziale è come se aggiungessi un angolo di 180°   Tesi (T)

img_20180922_201417.jpg

  1. P(n) + 180 = [(n-2) * 180] +180   
  2. {[(n-2)*1]+1}  *180 , ho raccolto il 180 tra le quadre e graffe
  3. ma banalmente [(n-2)*1] +1 = (n-2)+1 e tutta l’espressione [(n-2)+1]  è P(n)+180 = P(n+1) la Tesi (T) 

Il metodo di induzione è un metodo diretto di dimostrazione.

Messaggio Non-Euclideo


Ieri sera stavo seduto sul terrazzino ed all’improvviso ho notato questo triangolo nel cielo e mi sono immaginato se da fuori fosse stato così piano come da “dentro”:

img_20180802_1938221733375567.jpg
si noti bene il triangolo nel cielo – foto scattata alle ore 19:22 del 02/08/2018

IMG_20180803_095856

IMG_20180803_100740

Bibliografia: l’equazione di Dio – Amir D.Aczel

Alain Connes …


Musica e Numeri

Corriere della Sera

 

Ci vogliono 20 minuti ….


img_20180715_192645.jpg

Corriere della Sera

La Saggezza nei Tentativi: Così nasce l’Amore dalle Probabilità


Esiste una Frequenza Relativa ed una Frequenza Probabile in tutti gli eventi.
La prima differisce dalla seconda dal numero esiguo di tentativi, faccio un esempio: Su 10 calci di rigore ne segnante 6 che, ipotizzando l’aleatorietà del fatto, vi conferma il 60% di successo; ma supponete di tirarne 1000 e qui fate ben 562 reti, il 56,2%. In questo caso la vostra Frequenza Relativa si trasforma in Frequenza Probabile proprio perché nella legge dei grandi numeri non si arriverà mai ad un risultato secco come 60%, ma ogni calcolo probabile oscillerà intorno al 60% propio come nel secondo esempio e questo grazie ai Tentativi, e quindi al tempo, che cambia il corso degli eventi coi i suoi risultati.
Ma la Probabilità, come nell’articolo Il Pensiero Positivo delle Probabilità è uno status mentale. Lanciando una moneta abbiamo il 50% di fare croce come testa; più lanci si fanno e più la % non sarà del 50% secco ma oscillerà a seconda del “caso” che, sebbene non esista, in matematica possiamo stabilirne con probabilità epistemica quindi quasi certa.SONY DSC

Esistono 2 tipi di Probabilità su Eventi …

  1. incompatibili – pari o dispari → P(A∩B) = 0, infatti la probabilità che escano contemporaneamente insieme è 0
  2. compatibili – dispari o multiplo 3 compreso tra 0 e 10 → P(A∩B) = 3/5

Ora, molti enunciati non sono chiari ma quando ci troviamo davanti a ” pari o dispari”, “settembre o novembre”, “mare o montagna”, “7 o 8″, si sommano le singole probabilità sottraendone l’in/compatibilità temporale che i due risultati accadano simultaneamente.

P(A∪B) = P(A) + P(B) – P(A∩B)
formula generale delle probabilità

dalla formula all’esempio: per trovare P(A∪B) sommiamo la probabilità che dal lancio della moneta risulti pari (1/2) con la probabilità che risulti dispari (1/2) e sottraiamo la probabilità che simultaneamente sia pari che dispari quindi l’intersezione dei due eventi (0). Il risultato (1) è la probabilità che lanciando una moneta si abbia pari o dispari = 1*100=100%
NB.
Figurativamente parlando il termine Incompatibili significa che temporalmente al verificarsi dell’evento è possibile avere solo una delle due Probabilità

mostra-duchamp-dalc3ac-e-magritte-640x342.jpg

Negli eventi compatibili (punto 2) notiamo subito che la parte P(A∩B) è ≠ 0 perché può capitare simultaneamente che escano numeri dispari P(A) e multipli di 3 P(B). così abbiamo:

P(A) = {1,3,5,7,9} → 5/10
P(B) = {3,6,9} → 3/10
P(A∩B) = {3,9} → 2/10
P(A∪B) = {1,3,5,6,7,9} → 6/10

seguendo la formula generale delle probabilità il risultato è il seguente:

5/10 + 3/10 – 2/10 = 6/10 = 3/5

… che possono risultare a volte …

  1. indipendenti tra loro – Che Probabilità ho di ottenere 5 e CROCE se lancio un dado ed una moneta
  2. dipendenti tra loro – Probabilità di scegliere due fiches rosse da 12 fiches rosse e 8 fiches nere

eventi

Per trovare la P di eventi indipendenti basta moltiplicarne le due singole probabilità tra loro es: P(A) = 1/6 per il tiro del dado di ottenere un numero desiderato con P(B) = 1/2 di avere testa o croce nel lancio di una moneta. Quindi P(A∩B) = P(A) *P(B) = 1/12

salvadordali

Diversamente calcolare la probabilità di due eventi dipendenti quindi di scegliere due fiches rosse su 12 fiches rosse ed 8 nere richiede un requisito già visto: Il calcolo fattoriale.

Perché?
Se è vero che le probabilità di calcolano attraverso il rapporto tra

casi favorevoli / casi possibili

se scegliessi un caso casualmente favorevole di conseguenza la probabilità di sceglierne un’altro simile tra i casi possibili cambierebbe istantaneamente; perciò ho bisogno di permutare il risultato al cambiare degli eventi. Quindi:

12! / 2!(12-2)! / 20! / 2! (20-2)!

12/20 * 11/19 è il risultato

Alquanto strano ma comprensibile se li vediamo singolarmente: infatti 12/20 è il 60% di probabilità di scegliere una fiches rossa al primo turno e che scende al 57,89% (11/19) nel sceglierne un’altra sempre rossa al secondo turno; questo perché il la mia scelta non è più tra 20 ma tra 19; quindi se andassimo avanti … per esempio (10/18) = 55,55%, così via.
Generalizzando questa dinamica viene chiamata Probabilità Condizionata e si calcola così:

P(A∩B) = P(A) * P(B|A)

P(B|A) si legge Probabilità che succeda B tenendo conto che è successo A

Il Pensiero è Positivo od anche il Percorso più Probabile?


Un evento per far si che si verifichi bisogna saperne l’aleatorietà? Il calcolo delle probabilità ci rassicura a riguardo e malgrado la nostra ansia, se puntassimo simultaneamente su due casistiche opposte, avremmo come risultante una vittoria = 1, es, testa o croce, pari o dispari ecc.

cropped-friedrich.jpgNei casi in cui avessimo n > 2 casistiche bisognerebbe vederne la posta in gioco se (f)avorevole o (s)favorevole secondo la formula

f*v – s*p / f+s 

Se tale espressione valesse 0 allora la (v)incita sarebbe equilibrata es:

Tiro 2 dadi da 6 e punto sull’uscita di un numero x >10, a quanto dovrebbe ammontare la ricompensa se ciò accadesse?
Per prima cosa abbiamo 6² = 36 casistiche dove 6 sono favorevoli e 30 sfavorevoli

img_20180624_220449.jpg

va da se che sostituendo alla formula i numeri verrebbe

6*1 – 30*1 / 6+30 = -2/3   →   -66% 

v = 5 darebbe il rapporto 5:1 come neutro e logico, e di conseguenza se puntassimo 1 su x >10 ed 1 su x <10 avremmo comunque una vincita >0 in quanto probabile che eventi possibili e favorevoli si verifichino, perciò Probabilità P(E) >0

è vero che la probabilità P della somma di eventi E e G è uguale alla somma delle rispettive probabilità allora

P(E + G)   =    P(E) + P(G)

dove spesso ci troviamo a puntare su più di una casistica contemporaneamente, es: 1×2 della schedina ed è utile dire che le probabilità mutano grazie alla seguente espressione

P = f / f+s 

così come vittoria e perdita → p/v+p. Se ponessimo l’uguaglianza v/ p+v = f/ f+s allora avremmo davanti non solo la scommessa ma anche il compenso e nella sua composizione Probabilistica.

C’è un quesito storico che fu oggetto di vari approcci risolutivi il quale trovò ampio consenso nella risoluzione da parte di Pierre Fermat (1623 – 1662) e Nicolò Tartaglia (1499 – 1557) e che parla di 2 scommettitori e sull’interruzione di una partita svolta nel puntare in totale 24 monete (12+12) su un banale testa o croce. La partita si interrompe a 6 lanci su 9 totali lasciando il risultato di 4-2 vittorie di X nei confronti di Y; la domanda chiedeva quali e quante fossero le probabilità, nonché il guadagno per ogni casistica se avessero finito la partita?

img_20180625_145139.jpg

La tabella riassume tutte le opzioni dei lanci futuri riassunti nel punteggio che per ovvie ragioni non andrebbe al di là del 5; avremmo 4 colone per 5-2, 2 colonne per 5-3 e una sola per 4-5 e 5-4, quindi su un totale di 2³=8 casistiche un 50% di 5-2, un 25% di 5-3 ed un 12,5% per 4-5 e 5-4 per un totale di 4 esiti finali.
Ora tralasciamo i lanci dal 1 al 6 e concentriamoci sugli ultimi 3 (7,8,9). Abbiamo messo 3 come esponente di 2 possibili condizioni cioè testa o croce giusto? Ma allora questo 2³=8 che cos’è? è la sommatoria ∑ dei coefficienti binomiali disposti in maniera probabilistica ma sempre in ugual numero.

img_20180625_153341.jpg

i coefficienti del cubo di un binomio (a+b)³ nello specifico ma in generale nel famoso quadrato di Tartaglia.
Ma quante monete spettano ad X ed Y ad ogni casistica? partiamo dal fondo a partita finita:

  • al ^9 tiro corrispondono le ultime due colonne 4-5 e 5-4 dove le 24 monete vano a X o Y
  • all’^8 tiro eseguito avremmo un 4-4 dove 12 monete vanno a ad X e 12 vanno a Y, oppure 5-3 dove tutte e 24 andrebbero a X. Ancora prima, quindi salendo a sinistra incontriamo un 4-3 dove comunque a X vanno 12 monete ma ad Y 12/2 = 6 e le restanti 6 a X perché in questo caso il tiro non è stato ancora effettuato. Ricapitolando: X=18 ed Y=6 
  • al ^7 tiro abbiamo il nodo 4-2 dove se si fa 5-2 ad X vanno 24, 4-3 si danno 18 a X e 6 a Y ma se venisse interrotto prima cioè a punteggio 4-2 (quindi il ^6 tiro) ad X andrebbero  18 sicure + 6/2=3 quindi 21 monete a 3 per X.

img_20180625_191734.jpg

il dividere per due indica l’aleatorietà dell’uomo che calcola al 50% la probabilità di un risultato in assenza di variabili di percorso lasciando una sensazione di intelligente ignoranza matematica perché in fondo … nulla è esatto quanto prevedibile.

bibliografia

la matematica dell'incertezza - Marco Li Calzi