#E3 – #A10: P(n-1)+ è la stessa cosa + P(n+1)


Qui sono esemplificati i due metodi induttivi (induzione ed induzione forte) 

  • (A): P(n-1)+P(n) = P(n)
  • (B): P(n) + P(n+1) = P(n+1)
  • grigio + verde = Ipotesi = Tesi

2018-09-28_11-38-54_595.jpg

#A10-#E Relazioni di Equivalenza


Si consideri in Ζ^z:{f che va da Z→Z di f funzioni} la relazione fℜg ⇔ ∀x∈Ζ di
f(x) – g(x) tale che siano divisibili per 3. Dire se:

  1. fℜg è di equivalenza?
  2. se prendessi f(x)=x e g(x)=x² allora fℜg è sempre di equivalenza?
  3. trovare la f≠g (in relazione con f(x)=1 ∀x∈Z che deve essere f(x) – g(x) = divisibile per 3)

sole-luna.jpg

L’enunciato del problema va tradotto: Z^z è una classe di funzioni, quindi un’intera armata di x che vanno in Y che rispettano questa legge f(x) – g(x) = 3κ (perché se è divisibile per 3 avrò una κostante ∈Z al di là del uguale)

Quindi posso riscrivere la funzione come f(x) – g(x) = 3κ affermandola come Tesi 

IMG_20180829_225532

  1.  fℜg per essere di equivalenza la tesi deve rispettare le proprietà riflessiva, simmetrica e transitiva. ∀x∈Z Quindi:
  •  fℜf  :      f(x) = f(x) che dà f(x) – f(x) = 0*k            ∀k∈Z   

Banalmente vera perché risulta 0=0 quindi riflessiva per il dominio 0∈Z

  • fℜg = gℜf :       f(x) – g(x) = – [g(x) – f(x)]   che dà                                  ∀k∈Z
  • f(x) – g(x) = g(x) – f(x) 
  • – (1*3) = 3*(-1)  che è sempre divisibile per 3

ho eseguito i seguenti passaggi perché se moltiplico *-1 che ∈Z e risolvo algebricamente l’espressione si ribalta.

  • fℜg e gℜh ⇒ fℜh :      f(x) – g(x)  e  g(x) – h(x) ⇒  f(x) – h(x) =                        ∀k∈Z
  • f(x) – g(x) = 3κ
  • g(x) – h(x) = 3q
  • f(x) – g(x)g(x) – h(x) = 3κ + 3q 
  • f(x) – h(x) = 3(κ+q)   che è sempre divisibile per 3

in conclusione il fatto che esistano delle funzioni con una relazione di equivalenza che portino le x∈Z in Z tramite funzione (x) – funzione (x)  a qualcosa (κ) che moltiplichi per 3 è scontato che se il risultato è divisibile per 3 allora la tesi è soddisfatta.

Cosa non sodisfatta per la seguenti funzioni

cropped-dali2.jpg

2.   f(x) = x    e    g(x) = x²                          ∀k∈Z

  • fℜf :  f(x) = f(x) , f(x) – f(x) = 0 *3      ok
  • fℜg = gℜf : f(x) – g(x) = g(x) – f(x)
  • x – x² = – (x² – x)
  • x – x² = 3κ
  • x = 1,     1 – 1² = 0
  • x = 2,    2 – 2² = 2² – 2 ,       -2 = 2?     che non è divisibile per 3

Quindi con l’ipotesi simmetrica fℜg ≠ gℜf decade sia l’equivalenza che la tesi

sole-luna.jpg

3.   abbiamo la f(x) = 1, quindi la sostituisco subito all’interno dell’equazione:

  • 1 – g(x) = 3κ
  • – g(x) = 3κ – 1
  • g(x) = 1 – 3κ 

trovata la g(x) che è diversa dalla f(x) come richiede l’enunciato, ora devo solo sostituirla e vedere se la tesi, il risultato, è vera cioè divisibile per 3

  • f(x) – g(x) = 3κ
  • 11 – 3κ  = 3κ

– 3κ    3κ ma la tesi è comunque dimostrata! 🙂


Musica e Numeri

Corriere della Sera

 

Alain Connes …

Il Pensiero è Positivo od anche il Percorso più Probabile?


Un evento per far si che si verifichi bisogna saperne l’aleatorietà? Il calcolo delle probabilità ci rassicura a riguardo e malgrado la nostra ansia, se puntassimo simultaneamente su due casistiche opposte, avremmo come risultante una vittoria = 1, es, testa o croce, pari o dispari ecc.

cropped-friedrich.jpgNei casi in cui avessimo n > 2 casistiche bisognerebbe vederne la posta in gioco se (f)avorevole o (s)favorevole secondo la formula

f*v – s*p / f+s 

Se tale espressione valesse 0 allora la (v)incita sarebbe equilibrata es:

Tiro 2 dadi da 6 e punto sull’uscita di un numero x >10, a quanto dovrebbe ammontare la ricompensa se ciò accadesse?
Per prima cosa abbiamo 6² = 36 casistiche dove 6 sono favorevoli e 30 sfavorevoli

img_20180624_220449.jpg

va da se che sostituendo alla formula i numeri verrebbe

6*1 – 30*1 / 6+30 = -2/3   →   -66% 

v = 5 darebbe il rapporto 5:1 come neutro e logico, e di conseguenza se puntassimo 1 su x >10 ed 1 su x <10 avremmo comunque una vincita >0 in quanto probabile che eventi possibili e favorevoli si verifichino, perciò Probabilità P(E) >0

è vero che la probabilità P della somma di eventi E e G è uguale alla somma delle rispettive probabilità allora

P(E + G)   =    P(E) + P(G)

dove spesso ci troviamo a puntare su più di una casistica contemporaneamente, es: 1×2 della schedina ed è utile dire che le probabilità mutano grazie alla seguente espressione

P = f / f+s 

così come vittoria e perdita → p/v+p. Se ponessimo l’uguaglianza v/ p+v = f/ f+s allora avremmo davanti non solo la scommessa ma anche il compenso e nella sua composizione Probabilistica.

C’è un quesito storico che fu oggetto di vari approcci risolutivi il quale trovò ampio consenso nella risoluzione da parte di Pierre Fermat (1623 – 1662) e Nicolò Tartaglia (1499 – 1557) e che parla di 2 scommettitori e sull’interruzione di una partita svolta nel puntare in totale 24 monete (12+12) su un banale testa o croce. La partita si interrompe a 6 lanci su 9 totali lasciando il risultato di 4-2 vittorie di X nei confronti di Y; la domanda chiedeva quali e quante fossero le probabilità, nonché il guadagno per ogni casistica se avessero finito la partita?

img_20180625_145139.jpg

La tabella riassume tutte le opzioni dei lanci futuri riassunti nel punteggio che per ovvie ragioni non andrebbe al di là del 5; avremmo 4 colone per 5-2, 2 colonne per 5-3 e una sola per 4-5 e 5-4, quindi su un totale di 2³=8 casistiche un 50% di 5-2, un 25% di 5-3 ed un 12,5% per 4-5 e 5-4 per un totale di 4 esiti finali.
Ora tralasciamo i lanci dal 1 al 6 e concentriamoci sugli ultimi 3 (7,8,9). Abbiamo messo 3 come esponente di 2 possibili condizioni cioè testa o croce giusto? Ma allora questo 2³=8 che cos’è? è la sommatoria ∑ dei coefficienti binomiali disposti in maniera probabilistica ma sempre in ugual numero.

img_20180625_153341.jpg

i coefficienti del cubo di un binomio (a+b)³ nello specifico ma in generale nel famoso quadrato di Tartaglia.
Ma quante monete spettano ad X ed Y ad ogni casistica? partiamo dal fondo a partita finita:

  • al ^9 tiro corrispondono le ultime due colonne 4-5 e 5-4 dove le 24 monete vano a X o Y
  • all’^8 tiro eseguito avremmo un 4-4 dove 12 monete vanno a ad X e 12 vanno a Y, oppure 5-3 dove tutte e 24 andrebbero a X. Ancora prima, quindi salendo a sinistra incontriamo un 4-3 dove comunque a X vanno 12 monete ma ad Y 12/2 = 6 e le restanti 6 a X perché in questo caso il tiro non è stato ancora effettuato. Ricapitolando: X=18 ed Y=6 
  • al ^7 tiro abbiamo il nodo 4-2 dove se si fa 5-2 ad X vanno 24, 4-3 si danno 18 a X e 6 a Y ma se venisse interrotto prima cioè a punteggio 4-2 (quindi il ^6 tiro) ad X andrebbero  18 sicure + 6/2=3 quindi 21 monete a 3 per X.

img_20180625_191734.jpg

il dividere per due indica l’aleatorietà dell’uomo che calcola al 50% la probabilità di un risultato in assenza di variabili di percorso lasciando una sensazione di intelligente ignoranza matematica perché in fondo … nulla è esatto quanto prevedibile.

bibliografia

la matematica dell'incertezza - Marco Li Calzi

 

#14A Teorema di Hartogs


Questo teorema ci garantisce che abbiamo |S|≤ |T|  oppure  |T|≤ |S|. Se sono vere entrambe allora |S|=|T| (Teorema di Cantor)

Prendiamo una famiglia F di funzioni che da A vanno a T come nel seguente schema, dove A ⊆ B ⊆ S. Risulta ovvio che la relazione d’ordine jA < JB possano rappresentare funzioni identiche per ogni a ∈ A.

Ora prendiamo in considerazione B come insieme ∪ di tutti i sottoinsiemi Bi ∀i ∈ I, quindi i,k,j,d,r ..etc in modo che questi formino una catena in F. Il discorso è il medesimo come sopra: una relazione d’ordine data dalle funzioni dei rispettivi insiemi verso T; l’unica differenza sta nella Catena stessa che rende Induttivo tutta F in quanto ammette almeno un maggiorante jB > jBi

img_5760.jpg

Allora per Zorn  se si ha un maggiorante si ha anche elementi massimali al suo interno, quindi ipotizziamo per assurdo di avere un massimale x° all’esterno di S trasformando quindi jB = T in B’ = jB ∪ x° = T

Per avere una funzione iniettiva da T → S avremmo bisogno dell’ assioma della scelta che mi sceglie un massimale che per assurdo sarebbe fuori da S dandomi una funzione d’ordine jB < jB° e contraddicendomi la massimalità di jB per l’insieme B 

Tutto è incentrato sulla relazione d’ordine e sulle catene formatesi all’interno di S.
Prendiamo in considerazione i numeri naturali N. L’insieme A={3,4,5,6} e B={2,3,4,5,6,7,8,9}; se formo una catena C={{1},{1,2},{1,2,3},{1,2,3,4} ecc } avrò per Zorn sicuramente un insieme con elementi maggioranti tra loro ed altrettanti massimali come per esempio tra E={1,2,3,} e F={1,2,3,4,5,6} ho come maggiorante M={3,4,5,6} ed il massimale ∈ E={3}.

Tutte queste scelte rispettano intrinsecamente una relazione d’ordine  e nel teorema di Hartogs riferendosi alle cardinalità degli insiemi presi in considerazione.

Bibliografia 
Dikran Dikranjan 
Maria Silvia Lucido – Aritmetica e Algebra 
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica 
Marco Manetti - Topologia

 

 

#A8-#E


IMG_5746

Nel primo esercizio basta notare le analogie che stanno nell’uguaglianza dei due coefficienti per capire che forse è inutile stare a trasformare le permutazioni, quindi bastano pochi passaggi algebrici per capire che la soluzione è più vicina di quanto sembri

Nel secondo esercizio le condizioni di esistenza devono essere x≥4, quindi al primo passaggio sostituiamo la formula base coi valori dei seguenti coefficienti binomiali. Poi permutiamo il 4 al primo denominatore così lo si elimina; sotto permutiamo invece la serie x! per eliminare il (x-4)! sempre al den., mentre al di là dell’uguale facciamo lo stesso con (x-3)!
semplifichiamo algebricamente i fattori comuni, moltiplichiamo lo stesso denominatore *6 così lo possiamo eliminare per trovarci con un semplice passaggio ad x-3=5, x=8 che è ≥4 

img_5734-e1522265310583.jpg

Al primo passaggio attuiamo la sostituazione alla formula madre n! / k!(n-k)!. nb. la seconda freccia verde in alto: sostituzione di k-1 e n-1 alla k di (n-k)! risulta [n-1-(k-1)]! cioè  [n-1-k+1]! quindi (n-k)!

So che (n-k)! = (n-k)(n-1-k)! e sostituisco
so che k! = k(k-1)! e sostituisco

effettuo il denominatore comune al penultimo passaggio e semplificando mi ritrovo la formula iniziale n! / k!(n-k)!
uguaglianza verificata con successo

 

 

 

#13A Prodotto Cartesiano


Assioma della scelta: Sia I un insieme (di indici), ed X = {Xi,i ∈ I} una famiglia di insiemi (indicizzati da I); indichiamo inoltre con X l’unione di tutti gli Xi. Allora esiste una funzione di scelta, cioè un’applicazione f : I → X tale che f(i)∈Xi  per ogni i∈I.

img_5723.jpg

Tralasciando che il II è la spiegazione del IV schema, di base una funzione f è una scelta di moltiplicare n elementi o sommare insiemi (la loro cardinalità) rispettando il seguente schema:

f :   I  →  A = AˆI

  • I ={insieme degli indici}

Sia se abbiamo una produttoria ∏ di elementi o di scelta di partizioni che una sommatoria ∑ di partizioni di A ciò che verrà elevato a potenza sarà la cardinalita di I

ps. vedere anche composizione di applicazioni

Bibliografia 
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra 
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica 
Marco Manetti - Topologia

 

#12A Assioma della Scelta – Axiom of Choice


L’assioma della scelta è un concetto sottile ed a prima vista scontato ma che dà una base solida ad ogni insieme e rapporto tra elementi.

russell.jpg

Ottenuto il concetto andiamo in profondità: ∀F (Famiglia) :∅∉F∃ sempre una funzione di scelta.

ƒ: S –> ∪ {Xi:i∈ I di F}

img_5709.jpg

S costituisce un’altro insieme cioè ∪(X,x) delle funzioni e di conseguenza degli elementi x∈X delle rispettive famiglie, quindi si ha che S=ƒ(F).
Scegliere tramite una funzione f un elemento appartenente ad una famiglia di insiemi crea visivamente una disgiunzione a due a due tra ad esempio {x}∪Xi con {x}∪Xj non vuoti, condizione esistenziale obbligatoria per far sì che avvenga una scelta.

La parte curiosa è anche dovuta alle applicazioni che ne derivano e che danno il via libera al lemma di Zorn:

f :   X →→ Y     ⇔      g :  X ¡→ Y
Dati 2 insiemi non vuoti ∃f suriettiva se e solo se ∃g iniettiva

Per ogni Catena C ⊂  X se ammette elementi massimali allora esiste almeno un minorante

particolare attenzione si può porre al fatto che la funzione della scelta possa essere anche interpretata come funzione canonica di una classe di equivalenza perché scegliendo  un insieme per il suo elemento instauriamo una relazione tra elementi di un insieme parzialmente ordinato (≤,N) 

In altre parole le frecce disegnate in verde sopra indicano che la g è la scelta tra tanti elementi di un sottoinsieme ed esiste solo se la f(X)=S oppure f(X) del {x} singoletto = y

Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica
Marco Manetti - Topologia