La cardinalità del continuo R coincide con la cardinalità dell’insieme delle parti dei numeri Naturali N, cioè |R|=|P(N)|
Questo teorema annuncia un importante salto concettuale per la cardinalità generale ma soprattutto sulla numerabilità degli elementi di un insieme in quanto apre le porte all’idea di “diversi infiniti” l’uno dentro l’altro.
N = {0,1,2,3,4,5,6,7 … ∞}
Z = {1,-1,2,-2,3,-3,4,-4,5,-5 … ∞} sembra più grande di N
Q = {1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 2/4, 3/3, 4/2, 5/1 … ∞}, cioè
1/1 = 1
1/2, 2/1 = 2
1/3, 2/2, 3/1 = 3
ecc.

La numerabilità dei razionali Q segue un percorso diverso scoperto da Cantor che sta nella tabella soprastante
ma per i numeri Reali?
Ebbene non si possono numerare perché non hanno una corrispondenza con l’insieme N in quanto seguendo molteplici schemi (come nell’esempio di Cantor) ci si è accorti che esiste sempre una numero diverso che non avevamo contato tra un numero l’altro, quindi l’infinito numerabile degli interi è diverso l’infinito non numerabile del continuo. Non solo: esso possiede una cardinalità più grande!
Ipotizziamo di avere due partizioni x∈R1 e y∈R2 (sezione di Dedekind) in cui esiste una relazione d’ordine ≤ (cioè un numero è più grande dell’altro); la loro unione porta ad avere tutto Q ed una funzione iniettiva per lemma di Zorn (scelta) che va da R1 a Q. Con queste premesse possiamo stabilire una relazione d’ordine |R|≤ |P(Q)|

inoltre P(Q) in quanto numerabile è riconducibile ai numeri naturali N e quindi possiamo anche scrivere P(Q) = P(N) = 2^N (per un insieme di soli 2 elementi)
Se tutto |R| = |N|∪|P(N)| allora |R|≤|P(N)|, iniettiva per scelta di una delle due partizioni come da esempio sottostante

tramite il teorema di Hartogs si può arrivare alla considerazione più plausibile: |R|=|P(N)|

Le dimostrazioni dei casi specifici sono lasciate al metodo di induzione per “riempire” il gap tra |R|≤|P(N)| e |R|=|P(N)|
Bibliografia
Dikran Dikranjan
Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica
Marco Manetti - Topologia
Mi piace:
Mi piace Caricamento...