Corriere della Sera

La Luna Poetica…

La Saggezza nei Tentativi: Così nasce l’Amore dalle Probabilità


Esiste una Frequenza Relativa ed una Frequenza Probabile in tutti gli eventi.
La prima differisce dalla seconda dal numero esiguo di tentativi, faccio un esempio: Su 10 calci di rigore ne segnante 6 che, ipotizzando l’aleatorietà del fatto, vi conferma il 60% di successo; ma supponete di tirarne 1000 e qui fate ben 562 reti, il 56,2%. In questo caso la vostra Frequenza Relativa si trasforma in Frequenza Probabile proprio perché nella legge dei grandi numeri non si arriverà mai ad un risultato secco come 60%, ma ogni calcolo probabile oscillerà intorno al 60% propio come nel secondo esempio e questo grazie ai Tentativi, e quindi al tempo, che cambia il corso degli eventi coi i suoi risultati.
Ma la Probabilità, come nell’articolo Il Pensiero Positivo delle Probabilità è uno status mentale. Lanciando una moneta abbiamo il 50% di fare croce come testa; più lanci si fanno e più la % non sarà del 50% secco ma oscillerà a seconda del “caso” che, sebbene non esista, in matematica possiamo stabilirne con probabilità epistemica quindi quasi certa.SONY DSC

Esistono 2 tipi di Probabilità su Eventi …

  1. incompatibili – pari o dispari → P(A∩B) = 0, infatti la probabilità che escano contemporaneamente insieme è 0
  2. compatibili – dispari o multiplo 3 compreso tra 0 e 10 → P(A∩B) = 3/5

Ora, molti enunciati non sono chiari ma quando ci troviamo davanti a ” pari o dispari”, “settembre o novembre”, “mare o montagna”, “7 o 8″, si sommano le singole probabilità sottraendone l’in/compatibilità temporale che i due risultati accadano simultaneamente.

P(A∪B) = P(A) + P(B) – P(A∩B)
formula generale delle probabilità

dalla formula all’esempio: per trovare P(A∪B) sommiamo la probabilità che dal lancio della moneta risulti pari (1/2) con la probabilità che risulti dispari (1/2) e sottraiamo la probabilità che simultaneamente sia pari che dispari quindi l’intersezione dei due eventi (0). Il risultato (1) è la probabilità che lanciando una moneta si abbia pari o dispari = 1*100=100%
NB.
Figurativamente parlando il termine Incompatibili significa che temporalmente al verificarsi dell’evento è possibile avere solo una delle due Probabilità

mostra-duchamp-dalc3ac-e-magritte-640x342.jpg

Negli eventi compatibili (punto 2) notiamo subito che la parte P(A∩B) è ≠ 0 perché può capitare simultaneamente che escano numeri dispari P(A) e multipli di 3 P(B). così abbiamo:

P(A) = {1,3,5,7,9} → 5/10
P(B) = {3,6,9} → 3/10
P(A∩B) = {3,9} → 2/10
P(A∪B) = {1,3,5,6,7,9} → 6/10

seguendo la formula generale delle probabilità il risultato è il seguente:

5/10 + 3/10 – 2/10 = 6/10 = 3/5

… che possono risultare a volte …

  1. indipendenti tra loro – Che Probabilità ho di ottenere 5 e CROCE se lancio un dado ed una moneta
  2. dipendenti tra loro – Probabilità di scegliere due fiches rosse da 12 fiches rosse e 8 fiches nere

eventi

Per trovare la P di eventi indipendenti basta moltiplicarne le due singole probabilità tra loro es: P(A) = 1/6 per il tiro del dado di ottenere un numero desiderato con P(B) = 1/2 di avere testa o croce nel lancio di una moneta. Quindi P(A∩B) = P(A) *P(B) = 1/12

salvadordali

Diversamente calcolare la probabilità di due eventi dipendenti quindi di scegliere due fiches rosse su 12 fiches rosse ed 8 nere richiede un requisito già visto: Il calcolo fattoriale.

Perché?
Se è vero che le probabilità di calcolano attraverso il rapporto tra

casi favorevoli / casi possibili

se scegliessi un caso casualmente favorevole di conseguenza la probabilità di sceglierne un’altro simile tra i casi possibili cambierebbe istantaneamente; perciò ho bisogno di permutare il risultato al cambiare degli eventi. Quindi:

12! / 2!(12-2)! / 20! / 2! (20-2)!

12/20 * 11/19 è il risultato

Alquanto strano ma comprensibile se li vediamo singolarmente: infatti 12/20 è il 60% di probabilità di scegliere una fiches rossa al primo turno e che scende al 57,89% (11/19) nel sceglierne un’altra sempre rossa al secondo turno; questo perché il la mia scelta non è più tra 20 ma tra 19; quindi se andassimo avanti … per esempio (10/18) = 55,55%, così via.
Generalizzando questa dinamica viene chiamata Probabilità Condizionata e si calcola così:

P(A∩B) = P(A) * P(B|A)

P(B|A) si legge Probabilità che succeda B tenendo conto che è successo A

Il Pensiero è Positivo od anche il Percorso più Probabile?


Un evento per far si che si verifichi bisogna saperne l’aleatorietà? Il calcolo delle probabilità ci rassicura a riguardo e malgrado la nostra ansia, se puntassimo simultaneamente su due casistiche opposte, avremmo come risultante una vittoria = 1, es, testa o croce, pari o dispari ecc.

cropped-friedrich.jpgNei casi in cui avessimo n > 2 casistiche bisognerebbe vederne la posta in gioco se (f)avorevole o (s)favorevole secondo la formula

f*v – s*p / f+s 

Se tale espressione valesse 0 allora la (v)incita sarebbe equilibrata es:

Tiro 2 dadi da 6 e punto sull’uscita di un numero x >10, a quanto dovrebbe ammontare la ricompensa se ciò accadesse?
Per prima cosa abbiamo 6² = 36 casistiche dove 6 sono favorevoli e 30 sfavorevoli

img_20180624_220449.jpg

va da se che sostituendo alla formula i numeri verrebbe

6*1 – 30*1 / 6+30 = -2/3   →   -66% 

v = 5 darebbe il rapporto 5:1 come neutro e logico, e di conseguenza se puntassimo 1 su x >10 ed 1 su x <10 avremmo comunque una vincita >0 in quanto probabile che eventi possibili e favorevoli si verifichino, perciò Probabilità P(E) >0

è vero che la probabilità P della somma di eventi E e G è uguale alla somma delle rispettive probabilità allora

P(E + G)   =    P(E) + P(G)

dove spesso ci troviamo a puntare su più di una casistica contemporaneamente, es: 1×2 della schedina ed è utile dire che le probabilità mutano grazie alla seguente espressione

P = f / f+s 

così come vittoria e perdita → p/v+p. Se ponessimo l’uguaglianza v/ p+v = f/ f+s allora avremmo davanti non solo la scommessa ma anche il compenso e nella sua composizione Probabilistica.

C’è un quesito storico che fu oggetto di vari approcci risolutivi il quale trovò ampio consenso nella risoluzione da parte di Pierre Fermat (1623 – 1662) e Nicolò Tartaglia (1499 – 1557) e che parla di 2 scommettitori e sull’interruzione di una partita svolta nel puntare in totale 24 monete (12+12) su un banale testa o croce. La partita si interrompe a 6 lanci su 9 totali lasciando il risultato di 4-2 vittorie di X nei confronti di Y; la domanda chiedeva quali e quante fossero le probabilità, nonché il guadagno per ogni casistica se avessero finito la partita?

img_20180625_145139.jpg

La tabella riassume tutte le opzioni dei lanci futuri riassunti nel punteggio che per ovvie ragioni non andrebbe al di là del 5; avremmo 4 colone per 5-2, 2 colonne per 5-3 e una sola per 4-5 e 5-4, quindi su un totale di 2³=8 casistiche un 50% di 5-2, un 25% di 5-3 ed un 12,5% per 4-5 e 5-4 per un totale di 4 esiti finali.
Ora tralasciamo i lanci dal 1 al 6 e concentriamoci sugli ultimi 3 (7,8,9). Abbiamo messo 3 come esponente di 2 possibili condizioni cioè testa o croce giusto? Ma allora questo 2³=8 che cos’è? è la sommatoria ∑ dei coefficienti binomiali disposti in maniera probabilistica ma sempre in ugual numero.

img_20180625_153341.jpg

i coefficienti del cubo di un binomio (a+b)³ nello specifico ma in generale nel famoso quadrato di Tartaglia.
Ma quante monete spettano ad X ed Y ad ogni casistica? partiamo dal fondo a partita finita:

  • al ^9 tiro corrispondono le ultime due colonne 4-5 e 5-4 dove le 24 monete vano a X o Y
  • all’^8 tiro eseguito avremmo un 4-4 dove 12 monete vanno a ad X e 12 vanno a Y, oppure 5-3 dove tutte e 24 andrebbero a X. Ancora prima, quindi salendo a sinistra incontriamo un 4-3 dove comunque a X vanno 12 monete ma ad Y 12/2 = 6 e le restanti 6 a X perché in questo caso il tiro non è stato ancora effettuato. Ricapitolando: X=18 ed Y=6 
  • al ^7 tiro abbiamo il nodo 4-2 dove se si fa 5-2 ad X vanno 24, 4-3 si danno 18 a X e 6 a Y ma se venisse interrotto prima cioè a punteggio 4-2 (quindi il ^6 tiro) ad X andrebbero  18 sicure + 6/2=3 quindi 21 monete a 3 per X.

img_20180625_191734.jpg

il dividere per due indica l’aleatorietà dell’uomo che calcola al 50% la probabilità di un risultato in assenza di variabili di percorso lasciando una sensazione di intelligente ignoranza matematica perché in fondo … nulla è esatto quanto prevedibile.

bibliografia

la matematica dell'incertezza - Marco Li Calzi