#E4 cAmpo ComplessO 1


  1. A= {x∈C : Re(z)>0}
  2. B= {w∈C : w= -iz+1-i, z∈A}
  3. C= {u∈C : u=1/w, w∈B}
  4. D= {z∈C : Re(z-(1/z))>0, Re(z)<0}
  5. E= {w∈C : w=(1+i√3)z, z∈D}

Soluzione

A) l’insieme delle x appartenenti a C t.c. la parte reale del numero complesso sia >0
per 0 escluso e giustamente tratteggiato sull’asse immaginaria Y

schermata-2018-10-29-alle-16-45-46.png

B) L’insieme delle w appartenenti a C t.c. prendendo le z appartenenti ad A siano -iz+1-i.

Possiamo vederla anche così: -iz+1-i>0
Quindi ho 2 soluzioni: la prima -iz e la seconda +1-i che mi dà z=-1

So che moltiplicare per -i la z significa ruotare in senso orario di -π/2 l’insieme A, che +1 porto a dx il grafico e -i traslo sull’asse immaginaria il tutto di -1(il suo coefficiente), il grafico corrispondente sarà il seguente:

schermata-2018-10-29-alle-17-09-26.png

C) l’insieme delle u appartenenti a C t.c. le w di B (per capirci quelle del grafico sopra) siano =1/w.

u è un numero complesso quindi trasformabile in u= x+iy.
w è trasformabile in 1/u e quindi 1/x+iy. moltiplico per il coniugato ed ottengo

x-iy/x²+y² = w

ora la parte immaginaria da prendere in considerazione (im(w)) deve essere necessariamente < -1 come da insieme B. Procedimento:

  • moltiplico per -1 sia (N) che (D) in modo da ottenere y/x²+y²>1
  • porto di là il (D): y>x²+y²
  • porto a dx anche la y: 0>y/x²+y²
  • aggiungo 1/4 ad entrambe i membri (C è un campo e lo posso fare) per alla fine avere una disequazione di II grado del tipo (1/2)²>x²+(x-1/2)² che corrisponde all’equazione della circonferenza di centro 1/2i e raggio 1/2
  • i punti u son tutti i punti interni alla circonferenza <1

Dato che u=1/w questa parte poteva anche essere risolta ponendo u*w=1 e sostituendo u=x+iy e w con l’equazione definita nell’insieme B trovava sia la parte Re che Im di u, che quest’ultima una volta messa a sistema tra loro dava le due soluzioni

schermata-2018-10-29-alle-18-08-21.png

D) tutti gli z di C t.c. la parte Reale di (z-(1/z)) sia > di 0 e contemporaneamente la parte Reale di (z) sia <0.

Risolvo Re z-(1/z)>0:

  • Re (1/z) = Re z©/|z|² (© = questo simbolo sta per coniugato)
  • da qui Re z- (1/z) = Re(z) – Re z©/|z|², cioè Re(z) – 1/|z|² *Re(z©)
  • raccolgo Re(z)(1- 1/|z|²)

dal raccoglimento capisco che se Re(z) deve essere >0 per enunciato allora i due fattori della moltiplicazione devono essere per forza entrambi <0. Quindi:

D= {z∈C : Re(z)<0, |z|<1}

Schermata 2018-10-29 alle 18.30.44

l’enunciato prende solo i punti interni in verde della circonferenza escludendo 1 come raggio e l’asse immaginaria y

E) tutti i punti interni z della circonferenza ruotati di 1+i√3.

Dalle forme trigonometriche dei numeri complessi si ottiene una circonferenza di raggio 2 ed i punti interni z ruotati di π/3, quindi in senso antiorario

schermata-2018-10-29-alle-18-44-53-e1540835185501.png

Prendere solo i punti che stanno al di sotto della retta passante per l’origine ed iscritti nella circonferenza

 

#E3 – #A10: P(n-1)+ è la stessa cosa + P(n+1)


Qui sono esemplificati i due metodi induttivi (induzione ed induzione forte) 

  • (A): P(n-1)+P(n) = P(n)
  • (B): P(n) + P(n+1) = P(n+1)
  • grigio + verde = Ipotesi = Tesi

2018-09-28_11-38-54_595.jpg

#A10-#E Relazioni di Equivalenza


Si consideri in Ζ^z:{f che va da Z→Z di f funzioni} la relazione fℜg ⇔ ∀x∈Ζ di
f(x) – g(x) tale che siano divisibili per 3. Dire se:

  1. fℜg è di equivalenza?
  2. se prendessi f(x)=x e g(x)=x² allora fℜg è sempre di equivalenza?
  3. trovare la f≠g (in relazione con f(x)=1 ∀x∈Z che deve essere f(x) – g(x) = divisibile per 3)

sole-luna.jpg

L’enunciato del problema va tradotto: Z^z è una classe di funzioni, quindi un’intera armata di x che vanno in Y che rispettano questa legge f(x) – g(x) = 3κ (perché se è divisibile per 3 avrò una κostante ∈Z al di là del uguale)

Quindi posso riscrivere la funzione come f(x) – g(x) = 3κ affermandola come Tesi 

IMG_20180829_225532

  1.  fℜg per essere di equivalenza la tesi deve rispettare le proprietà riflessiva, simmetrica e transitiva. ∀x∈Z Quindi:
  •  fℜf  :      f(x) = f(x) che dà f(x) – f(x) = 0*k            ∀k∈Z   

Banalmente vera perché risulta 0=0 quindi riflessiva per il dominio 0∈Z

  • fℜg = gℜf :       f(x) – g(x) = – [g(x) – f(x)]   che dà                                  ∀k∈Z
  • f(x) – g(x) = g(x) – f(x) 
  • – (1*3) = 3*(-1)  che è sempre divisibile per 3

ho eseguito i seguenti passaggi perché se moltiplico *-1 che ∈Z e risolvo algebricamente l’espressione si ribalta.

  • fℜg e gℜh ⇒ fℜh :      f(x) – g(x)  e  g(x) – h(x) ⇒  f(x) – h(x) =                        ∀k∈Z
  • f(x) – g(x) = 3κ
  • g(x) – h(x) = 3q
  • f(x) – g(x)g(x) – h(x) = 3κ + 3q 
  • f(x) – h(x) = 3(κ+q)   che è sempre divisibile per 3

in conclusione il fatto che esistano delle funzioni con una relazione di equivalenza che portino le x∈Z in Z tramite funzione (x) – funzione (x)  a qualcosa (κ) che moltiplichi per 3 è scontato che se il risultato è divisibile per 3 allora la tesi è soddisfatta.

Cosa non sodisfatta per la seguenti funzioni

cropped-dali2.jpg

2.   f(x) = x    e    g(x) = x²                          ∀k∈Z

  • fℜf :  f(x) = f(x) , f(x) – f(x) = 0 *3      ok
  • fℜg = gℜf : f(x) – g(x) = g(x) – f(x)
  • x – x² = – (x² – x)
  • x – x² = 3κ
  • x = 1,     1 – 1² = 0
  • x = 2,    2 – 2² = 2² – 2 ,       -2 = 2?     che non è divisibile per 3

Quindi con l’ipotesi simmetrica fℜg ≠ gℜf decade sia l’equivalenza che la tesi

sole-luna.jpg

3.   abbiamo la f(x) = 1, quindi la sostituisco subito all’interno dell’equazione:

  • 1 – g(x) = 3κ
  • – g(x) = 3κ – 1
  • g(x) = 1 – 3κ 

trovata la g(x) che è diversa dalla f(x) come richiede l’enunciato, ora devo solo sostituirla e vedere se la tesi, il risultato, è vera cioè divisibile per 3

  • f(x) – g(x) = 3κ
  • 11 – 3κ  = 3κ

– 3κ    3κ ma la tesi è comunque dimostrata! 🙂

#A11 -E2: Induzione Geometrica


un esempio facile di metodo di induzione visto dal punto di vista geometrico.

Si ha il seguente enunciato: Dimostrare che la somma degli angoli interni di un poligono di n lati equivale a (n-2)*180° angoli piatti. 

Riscriviamo la Proposizione P meglio:

  • P(n) = la somma degli angoli interni di un triangolo di n lati 
  • (n-2)*180 = angoli piatti

quindi abbiamo che P(n) = (n-2)*180 

  1. troviamo se P(0) è vera
    Se pensiamo al quadrato, come poligono di 4 lati e sostituiamo la n col 4 avremo
    (4-2)*180° = 2*180° = 360°
    Stessa cosa col pentagono, n = 5 avremo (5-2)*180 = 540° … ecc quindi banalmente per ogni sostituzione di n P(n) è sempre vera.
  2. Se P(n) vera ⇒ P(n+1) sarà vera?   Ipotesi (I)
  3. Quindi P(n+1) = P(n) + 180°, perché? Perché se aggiungo un lato al poligono iniziale è come se aggiungessi un angolo di 180°   Tesi (T)

img_20180922_201417.jpg

  1. P(n) + 180 = [(n-2) * 180] +180   
  2. {[(n-2)*1]+1}  *180 , ho raccolto il 180 tra le quadre e graffe
  3. ma banalmente [(n-2)*1] +1 = (n-2)+1 e tutta l’espressione [(n-2)+1]  è P(n)+180 = P(n+1) la Tesi (T) 

Il metodo di induzione è un metodo diretto di dimostrazione.


Corriere della Sera

La Luna Poetica…


img_20180715_192645.jpg

Corriere della Sera

Ci vogliono 20 minuti ….

Induzione: Bernoulli e la Nostra disuguaglianza


m

l’ipotesi non è un concetto banale per comprendere il principio; basta sostituire un numero (1,2,3,4…n o p) che soddisfi le condizioni di esistenza per dedurne nel particolare la veridicità

m2.jpg

A- primo passaggio proprietà della potenze su (1+p)^n * (1+p)

“np^2 diventa trascurabile” potrebbe stridere ma in verità si tratta di flessibilità mentale in quanto spesso capita in alcune operazioni di scremare (qui è l’esempio di una sommatoria) per non perdere la richiesta dell’enunciato.
Piccolo consiglio: in matematica mai complicarsi la vita e viaggiare sempre leggeri.

 

BIBLIOGRAFIA:
CARL B.BOYER – STORIA DELLA MATEMATICA
RICHARD COURANT E HERBERT ROBBINS – CHE COS’È LA MATEMATICA