#5AN sp4zio M3tric0


  1. Sia p∈Q e p∈I, I =numeri irrazionali e quindi complementare di Q ⇒ ∂Q = ∂I = R

Questo è sempre vero perché in una bolla B(p,r) (punto p e raggio r) la distanza d(p-r,p+r) avrà sempre dei punti razionali/irrazionali che apparterranno all’elemento di frontiera di uno o dell’altro insieme(Q ed I), conseguentemente è vero anche

2) il punto di frontiera ∂ ∃ necessariamente in Q∩I

glass-ball-1813707_960_720-e1541271483473.jpg

3) un punto o è di accumulazione o è isolato

un punto isolato significa 0<s<min[d(p,xn)]. Senza disegno immaginatevi che il punto p∈A sia una bolla di raggio s; e che questo s sia minore del minimo della distanza tra il suo centro p ed un centro di un’altro elemento x preso n finite volte ad esempio 6. Da qui ne consegue che

4) Se A è finito ⇒ A’ finito (e viceversa)

dove A’ è l’insieme dei punti di accumulazione o insieme derivato.

img_56431-e1519639041130.jpg

5) A è chiuso ⇔ A’ ⊆ A

(X,d) metrico, ed A’ è l’insieme dei punti di accumulazione. Abbiamo la nostra bolla B(p,r) ed un nostro elemento x preso all’interno dello spazio metrico stesso. Ora ricordate il punto 3? Se il raggio della bolla B(p,r) era > della distanza minima d(p,xn) allora si aveva un punto di accumulazione? Bene se questo punto è un sottoinsieme di A allora A è chiuso ed Ac è aperto, altrimenti viceversa.
Ad esempio pensate all’insieme

E = {x∈X : d(p,x) <4}    ed il suo complementare    Ec = {x∈X : d(p,x) ≥4}

Qualsiasi punto p che prenda all’interno di E, per quanto vicino possa essere all’estremo superiore 4, il suo raggio non lo raggiungerà mai; questa fa sì che 4 sia un punto di accumulazione che ∉ E ma bensì al suo complementare che lo include col segno ≥. Perciò l’insieme derivato E’⊆Ec, ed Ec è chiuso, mentre E è aperto.

W.Szymborska-cop

6) Â = A ∪ A’       si chiama chiusura di A

esempi sono:

  • A = Q   ⇒   Â = R 
  •  Â = B(p,r) = {x∈Rˆn : ||p – r||≤ r }, che è l’unione degli insiemi E ed Ec

La chiusura possiede delle proprietà ovvie riferite anche a famiglie di insiemi e le loro unioni ed intersezioni, quindi considerano uno aspetto più ampio.

diamA = sup d(x,y)  oppure  diamA =  supA – infA      per      x,y ∈ A

immaginate due punti su di una retta R e prendete gli estremi superiori. La distanza che ne intercorre è il diametro dell’insieme A.

Se A< +∞ ⇒ A è limitato
Se diamA = 0    ⇒    A = {a}   elemento singolo

  • se l’elemento singolo è l’insieme A  ⇒ supA – infA = 0
  • se supA – infA ≠ 0 ⇒ ∃ε>0 che funge da gap per almeno i due punti estremi del diamA! In questo caso abbiamo che diamA ≤ sup d(x,y) dove x ed y sono B(x,r) e B(y,s), ne consegue che
  • diamA = diamÂ, dove supA – infA – 2ε < sup d(x,y) 
bibliografia
analisi matematica - soardi

#E3 – #A10: P(n-1)+ è la stessa cosa + P(n+1)


Qui sono esemplificati i due metodi induttivi (induzione ed induzione forte) 

  • (A): P(n-1)+P(n) = P(n)
  • (B): P(n) + P(n+1) = P(n+1)
  • grigio + verde = Ipotesi = Tesi

2018-09-28_11-38-54_595.jpg

#11A Ricorsione Forte: Fibonacci e forme Induttive


Principio di Induzione

I Forma

  1. abbiamo P(n) 
  2. P(0) è vera – Peano
  3. P(k) è vera  ⇒ P(k+1) è vera

E qui la ricorsione è data dall’affermazione della proposizione P che se vale per k+1allora vale per n. La stessa la si trova nella seguente analogia

x+0=x,     x+S(y) = S(x+y)

x*0=x,   x*S(y) = x*y + x

x^0=1,    x^n+1 = x^n*x   [oppure]   x^n-1*x = x^n

Fibonacci nel un esempio singolare di induzione in quanto come serie numerica tiene conto di ben 2 numeri precedenti i quali sommati danno il terzo. La curiosità è che tutta la serie dà come immagine una funzione di restrizione dei N naturali formata dai sottoinsiemi in H al variare di i<n

IMG_5698

w = N numeri naturali

II Forma

  1. abbiamo P(n)
  2. P(0) è vera
  3. allora ¥m>0, se A(k) è Vera ¥0≤k<m, ⇒ A(m) è Vera, quindi
  4. A(n) è vera ¥n∈N

Qui la forma si complica ma si completa perché al posto di un indice ne abbiamo 2 cioè k,ν.

Supponiamo di avere m=4, allora la formula scritta in blu dovrebbe valere per qualsiasi 2 ≤ν ≤k ≤m perché giustamente per 0 ed 1 è già verificata come vera.

img_5702.jpg

come viene suddivisa la sommatoria prendendo come esempio m=4

Detto questo verifichiamo se per la condizione più “stretta” 2 =ν =k =m può valere per tutti gli m+1 oltre il 2.

img_5703.jpg

prima riga = f(n)= secondo membro. Seconda riga ipotesi di f(n+1) al membro di dx. Terza riga è la tesi dove aggiungo all’f(n) di sx il +1. Quarta riga affermo la tesi tramite calcoli algebrici

  1. alla prima riga riscrivo l’equazione nella forma originaria
  2. ci aggiungo, a destra la sommatoria sostitutiva di m+1 di sx. In rosso la freccia indica la stessa parte. La seconda riga è L’ipotesi induttiva che deve essere verificata, per capirci f(n+1)
  3. Prendo il secondo membro dell’uguaglianza del punto 1 e ci aggiungo il “+1″ che è la sommatoria del f(n+1). La trasformo in modo d’avere le sommatorie identiche (segante in blu)
  4. proprietà distributiva e raccolgo la parte comune del punto 3 e la moltiplico per il “+1” dei 2 indici ottenendo esattamente la formula iniziale ma con k,ν che vanno fino a m+1
Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica

 

#6A insieme InFinito


Cos’è un insieme infinito?

Cantor e Dedekind hanno visioni analoghe e rispondono chiaramente formalmente alla domanda; ma mettiamo un po’ di chiarezza dove il linguaggio matematico nel spiegare l’ovvietà ci complica un po’ la comprensione.

cropped-uccelli-di-vinile-simbolo-infinito-jpg1.png

Parto da Peano in quanto se mi soddisfa i suoi 5 punti allora esiste qualunque insieme infinito concernente i numeri naturali N. Approfondiamo:

IMG_5637

Non esiste suriettività nella funzione s così come nella f che va da X —> X, quindi prendo una ed una sola x∈X\ f(X) (vedi sopra la x piccola in nero).
Sia F la famiglia di tutte le A⊆X tali che le loro funzioni f(A)⊆A, quindi anche X⊆A (per la regola dell’insieme delle parti) e che C siano invece quegli insiemi facenti parte della famiglia delle intersezioni di A tale che x∈C ed abbia un successore in se stesso s: C —-> C come restrizione di f.

  1. C∈N
  2. x∈N|s(x)∈N
  3. x∉s(C) perché x∉f(X)
  4. s ed f sono iniettive

per descrivere meglio il punto 5 introduco il concetto di ricursione con un esempio:

img_5645-e1519639099982.jpg

 

f(n) = s(n) ed è la sommatoria di tutte le n∈N che hanno la ƒ:  N —> X. 

  • la funzione produttoria = Γƒ ⊆ NxX (grafico) corrisponde all’intersezione di tutte le ƒ: N —->X raggruppate in una famiglia F
  • il termine ricorsivo sta nel riferimento a se stessa nella funzione dopo n = s(n), s(n) = ƒ(s(n)) ecc. che nel punto 5 soddisfa il principio d’induzione nella sua prima forma.
Bibliografia Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica

#5A assiomi: Estensionalità, Astrazione, Comprensione, Peano e tavole della Verità


Estensionalità
Due classi sono uguali se hanno gli stessi elementi

Astrazione
Data una proprietà definita P esiste una classe in cui gli elementi sono oggetti x che verificano P

Tale classe è unica e si scrive {x : P(x)}, quindi a ∈ {x : P(x)} ⇔ P(x) vale.
Bertrand Russell ha dato una definizione di classe per la quale non sarebbe contemporaneamente un’insieme. Per definizione la cosiddetta “classe di Russell” viene definita così: {x : x ∉ x}. Per evitare fraintendimenti dobbiamo prima definire la differenza che intercorre tra classe ed insieme.

Gli assiomi fin qui predispongono per astrazione un insieme universo V dove son presenti tutte le diciture finora prese in considerazione quali “elementi”, “insiemi”, classi” ecc. Partendo dal presupposto che sono i predicati P ad ordinare il linguaggio in base alla funzione, un insieme è una classe che appartiene ad almeno un’altra classe, la quale se non appartenesse ad un’insieme verrebbe chiamata classe propria.

Comprensione
Dato un insieme A ed una proprietà P definiamo  {x ∈ A : P(x)} la classe, ovvero quegli elementi x di A che soddisfano il predicato

Una sottoclasse di un insieme è un’insieme, per esempio prendiamo l’insieme B ed una proprietà P; la sua classe è definita così  {x ∈ B : P(x)} e la sua sottoclasse come
{x: x ∈ A ∧ P(x)}. Data l’inclusione della sottoclasse la dicitura {x ∈ B : P(x)} viene comunemente chiamata insieme.


  1. 0 ∈ N
  2. n ∈ N | s(n) ∈ N           ∀ n ∈ N
  3. s(n) ≠ 0                           ∀ n ∈ N
  4. s(n) ≠ s(m) ⇒ n ≠ m   ∀ n ∈ N
  5. E ⊆ N | 0 ∈ N        ∧      ∀ n ∈ E ∃ n ∈ N | E=N

Partendo dal principio asseriamo che Peano con i seguenti assiomi indimostrabili categorizza e classifica i numeri naturali ≥ 0 (N+) detti anche interi non negativi.

  1. Per (a) come elemento di un sottoinsieme E ⊆ N attribuiamo il valore a = 0 
  2. per ogni numero che appartiene ai numeri naturali esiste un suo successivo codificato come s(n)
  3. a non e successivo di nessun numero naturale
  4. diversi i successivi, diversi i numeri da cui provengono
  5. se una funzione f è attuabile ad a = 0 così come al successore (es 1) allora è attuabile a qualsiasi numero naturale

il punto n5 è formalmente il principio di induzione.
Tale principio ha dimostrato coerentemente proprietà molto importanti dell’aritmetica per la somma (+) ed il prodotto (*) quali

  • commutativa  (a+0=0+a, a*1=1*a)
  • associativa [a+(b+c)] = [(a+b)+c], a*(b*c)=(a*b)*c
  • distributiva (del prodotto rispetto la somma, a*(b+c) = (a+b)*(a+c)
img_5622.jpg

dove S sta per “successore” questa è l’immagine della dimostrazione della proprietà commutativa dell’addizione usando le applicazioni composte dove s^n(m) = n+m

 


Dati gli insiemi X, Y, Z stabiliamo le tavole della verità a seconda se un elemento appartenente ad uno, due o tre insiemi contemporaneamente, quindi affermiamo V (vera) se c’è o F (falsa) se non c’è.
Congiuntamente prendiamo dei connettivi logici che valgono per (∧=e), (∨=o) che rispecchiano, anche morfologicamente, i segni di intersezione (∩) ed unione (∪) che si usano normalmente nei casi in cui bisogna dimostrare se un elemento è presente o meno in un gruppo di insiemi. Esempio:

(A∩B)∪C = (A∪C) ∩ (B∪C) è un’uguaglianza vera?

IMG_5623

caso particolare: abbiamo una tautologia quando accade un’ipotesi premessa che fa avverare la tesi, quindi risulta sempre vera, per esempio:

se mangio allora ingrasso

P = mangio
I = ingrasso

mangio allora ingrasso = (P⇒I)

=

[P∧(P⇒I)⇒I] = [mangio e (se mangio allora ingrasso) allora ingrasso]

Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Carl B.Boyer - storia della matematica

 

#1A definizioni Preliminari


Algebra in arabo significa ‘unione’, ‘connessione’, ma prima di affrontare l’argomento delle funzioni diamo un po’ di definizioni preliminari:

f: X ——> Y

è una relazione binaria da X in Y calcolati, in caso non specificato, come insiemi non vuoti

idx : X ——-> X

applicazione identica che identifica ogni elemento x dell’insieme X con se stesso

  1. Sia ha Y è una parte non vuota di X

iy : Y ——–> X

immersione di Y in X quando “per ogni x appartenente a Y Esiste una x appartenente a X”

1 bis.  sia f : X —————> Z

f↑y : Y ——–> Z

restrizione di  f↑y (y) = f(y) per ogni y appartenente a Y.
Questo caso permette di avere un elemento dell’insieme X al di fuori della relazione tra Y e Z altrimenti ci troveremmo davanti al caso in cui Z è sottoinsieme di Y che è sottoinsieme di X.

G(f) = f : X ——> Y

grafico è una funzione stessa identificata anche come sott’insieme del piano cartesiano
X x Y. Da qui la funzione f stessa è un sott’insieme di X x Y.

Di norma X è l’insieme detto dominio dell’applicazione mentre Y il codominio mentre la funzione esiste in quanto collega elementi del dominio ad elementi del codominio.

f (x) = f {[x]}

Si parla di immagine di xl’elementoy appartenente all’insieme Y e collegato da una funzione f. si chiama anche immagine di x secondo f

f ¯¹(y) = y

contro immagine o immagine inversa dove la funzione f ¯¹y ∃ a Y alla x di X della funzione originaria

220px-Inverse_Function

f e la sua inversa

funzione-iniettiva-grafico.jpg

figura 1
funzione iniettiva – per ogni x,y,z appartenente a X c’è una funzione f tale che f (x) = f (y) = f (z). Non importa se nell’insieme Y ci siano elementi senza funzione, l’importante che la funzione inversa f ¯¹(y) abbia al più un’immagine in Y

figura 2
funzione suriettiva – per ogni y appartenente a Y esiste una x in X tale che f (x) = y. Praticamente solo se f (X) = Y quindi tutte le funzioni siano soddisfatte in Y e che l’elemento y abbia almeno una contro immagine in X

P(A)= {1,2,3,1-2,1-3,2-3, ∅}

L’insieme delle parti di A è la combinazione tra loro degli elementi dell’insieme A=(1,2,3) compreso l’insieme vuoto – def. IV-
Perciò

P (∅) = {∅}

Quantificatori limitati ci danno molte più informazioni di quanto pensiamo

∃a ∈ X |P(a)

traduzione: esiste una a appartenente a X tale che una proposizione di a sia vera.
ciò significa che a ∈ X ∧ a ∈ P(a) = ∃a | a ∈ {X ∩ P(a)}

∀a ∈ X |P(a)

traduzione: per ogni a appartenente ad X tale che una proposizione a sia vera.
ciò significa che a ∈ X ed X ⊆ {a | P(a)}≠ 0
per ogni a appartenente ad X vale P(a)

X ∩ ∅ = ∅                 X ∪ ∅ = X
|X| = 0 —-> ∅
|X| = 1 —–> elemento singolo

Dikran Dikranjan
Maria Silvia Lucido – Aritmetica e Algebra

Metodo induttivo


img_5219.jpg

Guardando l’enunciato ricordarsi sempre di identificare cosa sto guardando. In questo caso un’uguaglianza tra una progressione numerica (sommatoria) ed una frazione.

Poi verificarne la veridicità tramite sostituzione, tenendo conto delle condizioni di esistenza. (Perché il contesto in cui si opera è la cosa più importante che chiunque, in qualsiasi situazione, prima di prendere una decisione e portarla fondo deve avere ben chiaro) – in questo caso “per ogni intero >=1.

img_5220.jpg

Ok è vera. Si fa questo passaggio perché altrimenti staremmo dimostrando l’enunciato nel campo dell’assurdo; sarebbe come fare i 100mt sulla terra con le pinne!

Ora, appurata questa uguaglianza come ipotesi vera dico che vale anche per ogni +1 che metto ad n, quindi la mia tesi dovrebbe portarmi ad un risultato del genere

img_5221.jpg

A questo punto se l’ipotesi l’ho dimostrata ed è vera mi manca solo da dimostrarne la tesi

img_5222-e1504361752520.jpg
queste due operazioni in realtà sono la stessa, cambia solo la parte verde, ma perché per dimostrare che venga lo stesso risultato ho bisogno di scambiare la sommatoria con la frazione

Questo passaggio è spesso delicato ed ho sottolineato i termini UGUALI con lo stesso colore.
Perché dico uguali? Perché in questo caso la sommatoria è la frazione. Basta sostituirla e risolvere per vedere se riesco ad ottenere lo stesso risultato.

img_5223.jpg

primo passaggio denominatore comune, secondo passaggio raccoglimento parziale 5^n+1, quarto passaggio estraggo 5 da 20n+15 e lo moltiplico per 5^n+1 dandomi 5^n+2.

il risultato ottenuto è lo stesso dell’immagine precedente. Uguaglianza dimostrata.

Ricordate il significato delle parole: In-durre per De-durre, trarre dentro (4^ immagine sostituzione delle parti verdi) per trarre da (5^ immagine la dimostrazione).
Elegante nella forma no?

 

BIBLIOGRAFIA:
CARL B.BOYER – STORIA DELLA MATEMATICA
RICHARD COURANT E HERBERT ROBBINS – CHE COS’È LA MATEMATICA