#5AN sp4zio M3tric0


  1. Sia p∈Q e p∈I, I =numeri irrazionali e quindi complementare di Q ⇒ ∂Q = ∂I = R

Questo è sempre vero perché in una bolla B(p,r) (punto p e raggio r) la distanza d(p-r,p+r) avrà sempre dei punti razionali/irrazionali che apparterranno all’elemento di frontiera di uno o dell’altro insieme(Q ed I), conseguentemente è vero anche

2) il punto di frontiera ∂ ∃ necessariamente in Q∩I

glass-ball-1813707_960_720-e1541271483473.jpg

3) un punto o è di accumulazione o è isolato

un punto isolato significa 0<s<min[d(p,xn)]. Senza disegno immaginatevi che il punto p∈A sia una bolla di raggio s; e che questo s sia minore del minimo della distanza tra il suo centro p ed un centro di un’altro elemento x preso n finite volte ad esempio 6. Da qui ne consegue che

4) Se A è finito ⇒ A’ finito (e viceversa)

dove A’ è l’insieme dei punti di accumulazione o insieme derivato.

img_56431-e1519639041130.jpg

5) A è chiuso ⇔ A’ ⊆ A

(X,d) metrico, ed A’ è l’insieme dei punti di accumulazione. Abbiamo la nostra bolla B(p,r) ed un nostro elemento x preso all’interno dello spazio metrico stesso. Ora ricordate il punto 3? Se il raggio della bolla B(p,r) era > della distanza minima d(p,xn) allora si aveva un punto di accumulazione? Bene se questo punto è un sottoinsieme di A allora A è chiuso ed Ac è aperto, altrimenti viceversa.
Ad esempio pensate all’insieme

E = {x∈X : d(p,x) <4}    ed il suo complementare    Ec = {x∈X : d(p,x) ≥4}

Qualsiasi punto p che prenda all’interno di E, per quanto vicino possa essere all’estremo superiore 4, il suo raggio non lo raggiungerà mai; questa fa sì che 4 sia un punto di accumulazione che ∉ E ma bensì al suo complementare che lo include col segno ≥. Perciò l’insieme derivato E’⊆Ec, ed Ec è chiuso, mentre E è aperto.

W.Szymborska-cop

6) Â = A ∪ A’       si chiama chiusura di A

esempi sono:

  • A = Q   ⇒   Â = R 
  •  Â = B(p,r) = {x∈Rˆn : ||p – r||≤ r }, che è l’unione degli insiemi E ed Ec

La chiusura possiede delle proprietà ovvie riferite anche a famiglie di insiemi e le loro unioni ed intersezioni, quindi considerano uno aspetto più ampio.

diamA = sup d(x,y)  oppure  diamA =  supA – infA      per      x,y ∈ A

immaginate due punti su di una retta R e prendete gli estremi superiori. La distanza che ne intercorre è il diametro dell’insieme A.

Se A< +∞ ⇒ A è limitato
Se diamA = 0    ⇒    A = {a}   elemento singolo

  • se l’elemento singolo è l’insieme A  ⇒ supA – infA = 0
  • se supA – infA ≠ 0 ⇒ ∃ε>0 che funge da gap per almeno i due punti estremi del diamA! In questo caso abbiamo che diamA ≤ sup d(x,y) dove x ed y sono B(x,r) e B(y,s), ne consegue che
  • diamA = diamÂ, dove supA – infA – 2ε < sup d(x,y) 
bibliografia
analisi matematica - soardi

#3AN Campo Ordinato Completo = R


Un campo è una struttura algebrica con una costante e due operazioni: (k,*,+)     ∀k∈K

che rispetta le seguenti proprietà: Associativa, Commutativa, Distributiva, Elemento Neutro. Un esempio di campo è l’insieme dei numeri razionali Q.

Ordinato perché possiede una relazione “<” che soddisfa le seguenti proprietà: 

Transitiva – se a<b e b<c ⇒ a<c    ∀a,b,c ∈ K,     ne segue che l’elemento neutro per la moltiplicazione “c>0∈N” non ne cambia la l’ordine

Se a≠b ⇒ a<b ∨ b<a

IMG_20180829_225532

Completo perché assume il teorema di completezza: se A⊂R (A• assunto come l’insieme dei maggioranti di R) Superiormente Limitato allora A• ha un minimo. Viceversa se (A∝ assunto come l’insieme dei minoranti di R) Inferiormente Limitato allora A∝ ha una massimo.

Dimostrazione:

  • Sia A⊂R, A sup lim: A•={x∈R :x≥a, ∀a∈A} ≠ ∅            (definizione dell’insieme dei maggioranti come non vuoto)
  • scelgo il minimo dei maggioranti di A• scegliendo la minima cifra tra 0 e 9 delle varie parti di cui è composto il numero: β = c0,c1 c2 c3 c4 c5 … ck-1, ck, xk+1,xk+2 ..
  • Prendo un’ipotetico numero σ = c0,c1 c2 c3 c4 c5 …ck……
  • confronto β e σ: se σ possiede una cifra a ck-1 = 9 allora per il teorema dei resti avremo un numero 9 periodico che ∉R in quanto ck-1,ck,xk+1,xk+2 ecc saranno 9 anche loro.
  • Per assurdo assumo che σ A• allora esiste un numero ϒ>σ t.c. la k-esima cifra di ϒk>ck, ma allora σ>β!! e non ho scelto il minimo elemento dell’insieme dei maggioranti!
  • quindi σ=β oppure le loro k-esime cifre sono ck<bk t.c. σ≤β
  • lo stesso procedimento è possibile affrontarlo con l’insieme dei minoranti

drops_water_water_drop_water_drops_blue_liquid_rain_clean-1276466.jpg!d

esempio

dimostrare che 1 è estremo superiore di A={∀n∈Q : (n-1)/n ≤1} o SupA=1

Sapendo che avere un estremo superiore vuol dire ammettere dei maggioranti; in questo caso da enunciato è esplicito che l’1 è il minimo dei maggioranti, ma per dimostrarlo vado per gradi.

Come prima domanda qual è la tesi dell’enunciato?

  • (n-1)/n ≤1 oppure SupA = 1

Se per ogni n appartenente a Q che sostituisco mi dà la disuguaglianza (n-1)/n≤1 allora 1 è il mio estremo superiore. E per dimostrarlo nego la tesi P.A. (per assurdo) dicendo che 1 non è SupA, quindi che Esiste un numero ε>0 che sottratto a 1 mi dà un’estremo superiore magari > (n-1)/n della seguente disuguaglianza:

1-ε   <(n-1)/n   ≤1

invece dopo opportuni calcoli mi risulta n>1/ε il che è sempre vero sempre perché stiamo all’interno dell’insieme Q dei razionali e conseguentemente

1/ε  <n  ≤1

1-ε è quell’elemento supposto massimo all’interno dell’insieme A e che sarà sempre minore di (n-1)/n per qualsiasi ε>0 io prenda. in altre parole avrò sempre un elemento massimo tra 1-ε ed 1 cioè (n-1)/n.

è il minore dei maggioranti? Sì perché se porto l’1 dentro all’insieme A: (n-1/n) – 1≤0 ottengo -1/n ≤0 sempre vero. Per quanto mi possa avvicinare ad 1 al massimo raggiungerò (n-1)/n per ogni n∈N.