#11e

sommatoria che da k=1 va a n di un'equazione. Come primo step levo la radice al denominatore moltiplicando sia num. che den. stesso per √k per semplificarmi i calcoli. Chiaramente nel farlo anche a n non serve perché sarebbe come moltiplicare (√k/√k=1), quindi n rimane invariato. Infine per il principio di induzione supponendo vera la... Continue Reading →

#11a Ricorsione Forte: Fibonacci e forme Induttive

Principio di Induzione I Forma abbiamo P(n)  P(0) è vera - Peano P(k) è vera  ⇒ P(k+1) è vera E qui la ricorsione è data dall'affermazione della proposizione P che se vale per k+1allora vale per n. La stessa la si trova nella seguente analogia x+0=x,     x+S(y) = S(x+y) x*0=x,   x*S(y) =... Continue Reading →

#8a Permutazioni e coefficienti Binomiali

Riassumendo il concetto una permutazione è un'applicazione iniettiva da un insieme finito X ad un'altro insieme finito Y dove ad uno ad uno che le x∈X vengono applicate alle y quest'ultime  saranno sempre meno da trovare in Y. La formula è la seguente: n! = n (n-1) (n-2) (n-3) ... (n - i +1) nel quadrato... Continue Reading →

Metodo induttivo

Guardando l'enunciato ricordarsi sempre di identificare cosa sto guardando. In questo caso un'uguaglianza tra una progressione numerica (sommatoria) ed una frazione. Poi verificarne la veridicità tramite sostituzione, tenendo conto delle condizioni di esistenza. (Perché il contesto in cui si opera è la cosa più importante che chiunque, in qualsiasi situazione, prima di prendere una decisione... Continue Reading →

Blog at WordPress.com.

Up ↑

%d bloggers like this: