#15a l’Ipotesi sui numeri Reali

La cardinalità del continuo R coincide con la cardinalità dell'insieme delle parti dei numeri Naturali N, cioè |R|=|P(N)| Questo teorema annuncia un importante salto concettuale per la cardinalità generale ma soprattutto sulla numerabilità degli elementi di un insieme in quanto apre le porte all'idea di "diversi infiniti" l'uno dentro l'altro. N = {0,1,2,3,4,5,6,7 ... ∞}... Continue Reading →

#8e

Nel primo esercizio basta notare le analogie che stanno nell'uguaglianza dei due coefficienti per capire che forse è inutile stare a trasformare le permutazioni, quindi bastano pochi passaggi algebrici per capire che la soluzione è più vicina di quanto sembri Nel secondo esercizio le condizioni di esistenza devono essere x≥4, quindi al primo passaggio sostituiamo la... Continue Reading →

#13a Prodotto Cartesiano

Assioma della scelta: Sia I un insieme (di indici), ed X = {Xi,i ∈ I} una famiglia di insiemi (indicizzati da I); indichiamo inoltre con X l’unione di tutti gli Xi. Allora esiste una funzione di scelta, cioè un’applicazione f : I → X tale che f(i)∈Xi  per ogni i∈I. Tralasciando che il II è... Continue Reading →

#12a Assioma della Scelta – Axiom of Choice

L'assioma della scelta è un concetto sottile ed a prima vista scontato ma che dà una base solida ad ogni insieme e rapporto tra elementi. Ottenuto il concetto andiamo in profondità: ∀F (Famiglia) :∅∉F∃ sempre una funzione di scelta. ƒ: S --> ∪ {Xi:i∈ I di F} S costituisce un'altro insieme cioè ∪(X,x) delle funzioni e di conseguenza... Continue Reading →

#11e

sommatoria che da k=1 va a n di un'equazione. Come primo step levo la radice al denominatore moltiplicando sia num. che den. stesso per √k per semplificarmi i calcoli. Chiaramente nel farlo anche a n non serve perché sarebbe come moltiplicare (√k/√k=1), quindi n rimane invariato. Infine per il principio di induzione supponendo vera la... Continue Reading →

#11a Ricorsione Forte: Fibonacci e forme Induttive

Principio di Induzione I Forma abbiamo P(n)  P(0) è vera - Peano P(k) è vera  ⇒ P(k+1) è vera E qui la ricorsione è data dall'affermazione della proposizione P che se vale per k+1allora vale per n. La stessa la si trova nella seguente analogia x+0=x,     x+S(y) = S(x+y) x*0=x,   x*S(y) =... Continue Reading →

Blog at WordPress.com.

Up ↑

%d bloggers like this: