Natura di Serie Topologica


 

 

 

Chiunque voglia sinceramente la verità è sempre spaventosamente forte

Dostoevkij non era un matematico, ma in quanto artista riconosceva l’uomo e la sua forza nel trovare comunione tra tutte le foto soprastanti con la formula generale della progressione; dal cavolo romanesco alle conchiglie ciò che noi vediamo ed i matematici codificano in linguaggio è una spirale, più o meno ampia ma coerentemente in armonia agli occhi dell’osservatore.

Cosa abita dietro a tanta armonia? Formule, tanto per cambiare!

hqdefault.jpg
serie aritmetica di n numeri per n che tende a + infinito

 

formula_letts_02350_006.jpg
serie geometrica q^n

 

Occupiamoci della seconda cioè della serie geometrica q^n che per la cronaca è la serie che codifica per strutture frattali come il cavolo romanesco.
A confrontare la foto con la formula sembrano non esserci punti di connessione ma se partissimo dal centro e tracciassimo con un pennarello il raggio che dall’origine della spirale esce su lungo tutto l’ortaggio, ad ogni cuspide che si interseca avremmo un q; questo procedimento reiterato allontanandoci dal centro ci fornisce una successione di q1,q2,q3,q4,…,qn-volte che sommate fra loro danno la formula astratta. Sebbene ogni n equivalga al logaritmo in base e di x, le somme parziali di tutti i q^n che incontriamo fino all‘n-esimo corrispondono alla stima della suddetta serie geometrica, la quale viene identificata tale perché l’esponente n segue una progressione del tipo:

  • e  + (e*e) + (e*e*e) + (e*e*e*e) + (e*e*e*e*e) + ….        per  e=q
  • e¹ +   e²   +     e³      +    …..           n,                          per n →∞
  • il carattere della serie che è dato dal lim per n →+∞ di eˆn = x che risulta >1 quindi divergente a +∞ (log in base e di x = n)

Come ci si è arrivati a tale risultato è descritto qui sotto

IMG_20181207_172205.jpg

 

  • ho moltiplicato per q la serie per tutti i termini fino ad arrivare al termine n-esimo maggiorandolo a +1
  • in C ho effettuato sia a dx che a sx la sottrazione Sn – qSn, che semplificando termine a termine
  • in D raccolgo a sx Sn
  • al 6 porto sotto (1-q). il risultato può essere visto come una sottrazione di due numeri razionali dove il secondo (quello con l’esponente n+1) corrisponde alla serie “trascurabile” ai fini del calcolo del limite per identificarne la convergenza
Schermata 2018-12-06 alle 23.59.08

[nella figura è leggermente divergente perché il lim per n →+∞ di eˆn = x = k  che risulta >1;
x = r che aumenta alla rotazione del punto p di distanza OP dal centro. La rotazione è data da kθ = ln r; mentre il modulo |r| ne è la distanza] 

Vale la pena spendere anche due parole sulla prima di serie che si identifica in {1+2+3+4+5+6+7+8+9+ …. +x} dove in questo caso i raggi di ogni braccio dell’aspirale sono a distanza costante di 1 l’un l’altro ed il ln di 1 è sempre “e”

Schermata 2018-12-06 alle 23.59.58
spirale di raggio costante n

Parlando di serie si identifica cosa sta dietro ad una spirale, al suo comportamento ed al carattere che mostra, ma i punti sono inseriti in una realtà tridimensionale dove ne fa da padrona anche il campo complesso con prodotti scalari, quindi la faccenda è molto più complicata se dovessimo spostarci da un punto di raggio più piccolo del II quadrante ad uno di raggio 8 volte tanto o 16000 volte più grande del III quadrante in.
Sta di fatto che dobbiamo a Gauss (ma non solo), l’inventore della prima formula dell’articolo [S=n(n+1)/2 per n→∞], se oggi riusciamo a concepire una metrica in modo coerente ed universale su tutte le forme esistenti conosciute … con una propensione verso il limite per capirne il comportamento 😉

 

 

#E4 cAmpo ComplessO 1


  1. A= {x∈C : Re(z)>0}
  2. B= {w∈C : w= -iz+1-i, z∈A}
  3. C= {u∈C : u=1/w, w∈B}
  4. D= {z∈C : Re(z-(1/z))>0, Re(z)<0}
  5. E= {w∈C : w=(1+i√3)z, z∈D}

Soluzione

A) l’insieme delle x appartenenti a C t.c. la parte reale del numero complesso sia >0
per 0 escluso e giustamente tratteggiato sull’asse immaginaria Y

schermata-2018-10-29-alle-16-45-46.png

B) L’insieme delle w appartenenti a C t.c. prendendo le z appartenenti ad A siano -iz+1-i.

Possiamo vederla anche così: -iz+1-i>0
Quindi ho 2 soluzioni: la prima -iz e la seconda +1-i che mi dà z=-1

So che moltiplicare per -i la z significa ruotare in senso orario di -π/2 l’insieme A, che +1 porto a dx il grafico e -i traslo sull’asse immaginaria il tutto di -1(il suo coefficiente), il grafico corrispondente sarà il seguente:

schermata-2018-10-29-alle-17-09-26.png

C) l’insieme delle u appartenenti a C t.c. le w di B (per capirci quelle del grafico sopra) siano =1/w.

u è un numero complesso quindi trasformabile in u= x+iy.
w è trasformabile in 1/u e quindi 1/x+iy. moltiplico per il coniugato ed ottengo

x-iy/x²+y² = w

ora la parte immaginaria da prendere in considerazione (im(w)) deve essere necessariamente < -1 come da insieme B. Procedimento:

  • moltiplico per -1 sia (N) che (D) in modo da ottenere y/x²+y²>1
  • porto di là il (D): y>x²+y²
  • porto a dx anche la y: 0>y/x²+y²
  • aggiungo 1/4 ad entrambe i membri (C è un campo e lo posso fare) per alla fine avere una disequazione di II grado del tipo (1/2)²>x²+(x-1/2)² che corrisponde all’equazione della circonferenza di centro 1/2i e raggio 1/2
  • i punti u son tutti i punti interni alla circonferenza <1

Dato che u=1/w questa parte poteva anche essere risolta ponendo u*w=1 e sostituendo u=x+iy e w con l’equazione definita nell’insieme B trovava sia la parte Re che Im di u, che quest’ultima una volta messa a sistema tra loro dava le due soluzioni

schermata-2018-10-29-alle-18-08-21.png

D) tutti gli z di C t.c. la parte Reale di (z-(1/z)) sia > di 0 e contemporaneamente la parte Reale di (z) sia <0.

Risolvo Re z-(1/z)>0:

  • Re (1/z) = Re z©/|z|² (© = questo simbolo sta per coniugato)
  • da qui Re z- (1/z) = Re(z) – Re z©/|z|², cioè Re(z) – 1/|z|² *Re(z©)
  • raccolgo Re(z)(1- 1/|z|²)

dal raccoglimento capisco che se Re(z) deve essere >0 per enunciato allora i due fattori della moltiplicazione devono essere per forza entrambi <0. Quindi:

D= {z∈C : Re(z)<0, |z|<1}

Schermata 2018-10-29 alle 18.30.44
l’enunciato prende solo i punti interni in verde della circonferenza escludendo 1 come raggio e l’asse immaginaria y

E) tutti i punti interni z della circonferenza ruotati di 1+i√3.

Dalle forme trigonometriche dei numeri complessi si ottiene una circonferenza di raggio 2 ed i punti interni z ruotati di π/3, quindi in senso antiorario

schermata-2018-10-29-alle-18-44-53-e1540835185501.png
Prendere solo i punti che stanno al di sotto della retta passante per l’origine ed iscritti nella circonferenza

 

#6A insieme InFinito


Cos’è un insieme infinito?

Cantor e Dedekind hanno visioni analoghe e rispondono chiaramente formalmente alla domanda; ma mettiamo un po’ di chiarezza dove il linguaggio matematico nel spiegare l’ovvietà ci complica un po’ la comprensione.

cropped-uccelli-di-vinile-simbolo-infinito-jpg1.png

Parto da Peano in quanto se mi soddisfa i suoi 5 punti allora esiste qualunque insieme infinito concernente i numeri naturali N. Approfondiamo:

IMG_5637

Non esiste suriettività nella funzione s così come nella f che va da X —> X, quindi prendo una ed una sola x∈X\ f(X) (vedi sopra la x piccola in nero).
Sia F la famiglia di tutte le A⊆X tali che le loro funzioni f(A)⊆A, quindi anche X⊆A (per la regola dell’insieme delle parti) e che C siano invece quegli insiemi facenti parte della famiglia delle intersezioni di A tale che x∈C ed abbia un successore in se stesso s: C —-> C come restrizione di f.

  1. C∈N
  2. x∈N|s(x)∈N
  3. x∉s(C) perché x∉f(X)
  4. s ed f sono iniettive

per descrivere meglio il punto 5 introduco il concetto di ricursione con un esempio:

img_5645-e1519639099982.jpg

 

f(n) = s(n) ed è la sommatoria di tutte le n∈N che hanno la ƒ:  N —> X. 

  • la funzione produttoria = Γƒ ⊆ NxX (grafico) corrisponde all’intersezione di tutte le ƒ: N —->X raggruppate in una famiglia F
  • il termine ricorsivo sta nel riferimento a se stessa nella funzione dopo n = s(n), s(n) = ƒ(s(n)) ecc. che nel punto 5 soddisfa il principio d’induzione nella sua prima forma.
Bibliografia Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica

Gauss l’artista


Carl Friedrich Gauss, uno dei principi della matematica lo reputo un vero artista, un regista, più che un pittore visti alcuni suoi ritratti, che faceva letteralmente recitare i numeri come voleva. Le serie ed il primo concetto di limite di una serie numerica lo dobbiamo soprattutto a lui.
Il problema che pose il suo maestro alla classe lui lo risolse in 5 minuti con un calcolo geniale; se sia una versione verosimile noi non possiamo saperlo, ma l’intuizione nel trovare una via alternativa è qui generalizzata ed ogni volta che la vedo mi vengono in mente le parole di Martha Medeiros “lentamente muore chi non capovolge il tavolo”

IMG_5218
Nel suo caso specifico era da risolvere la somma dei numeri che vanno da 1 a 100. Lui la ribaltò e vide che nel primo passaggio risultava la somma per ben 100 volte dello stesso numero: 101. Da lì i passaggi seguenti sono ovvi.

Ecco perché 1+2+3+….+n=Sn.
Entrare nella logica, cioè nel logos, significa abitare le stanze della comprensione.
Esempio questo usato anche per dimostrare il metodo di induzione.

nb. Sn sta per Sommatoria Numerica e non Serie.

 

BIBLIOGRAFIA:
CARL B.BOYER – STORIA DELLA MATEMATICA
RICHARD COURANT E HERBERT ROBBINS – CHE COS’È LA MATEMATICA