#8An – l’importanza delLa Frontiera


se Accumulazione E'

Espressione Canonica:   ∂A ∪ A°c

  • A°: punti interni ad A
  • ∂A: la frontiera di A
  • A°c: punti interni all’insieme complementare Ac

immagino il seguente intervallo A: [0,1]
lo 0 è incluso nell’intervallo e rappresenta non solo il lim.inf. ma anche minimo e minorante, mentre l’1 è lim. sup., massimo e maggiorante 

A°complementare è (-∞,0) ∪ (1,+∞) = Ac

(1/n, n/n+1) è una copertura non adatta perché sostituendo una n arbitrariamente grande l’intervallo (0,1) si allarga sempre più senza raggiungere i punti estremi, quindi per coprirlo dovrei scrivere {0}∪(1/n, n/n+1)∪{1}; posso formare una sottocopertura di n finiti intervalli, per esempio: (-1/3,1/3)∪(0,1)∪(2/3,4/3). In questo modo lo rendo compatto 

è semplice capire che all’aumentare di n la funzione tende a sx a 0 ed a dx ad 1 rendendo le frontiere ∂A dei punti di accumulazione (A’) 

Grazie al teorema di comprensione metrica #An 7 so che un punto di accumulazione è quella bolla di punto p e di raggio r che intersecata con E ha al suo interno (per qualsiasi raggio ε>0) infiniti punti x∈E; inoltre i punti di accumulazione appartengono sempre alla frontiera ∂A che nel nostro caso [0,1] è interna all’intervallo rendendolo Chiuso!

  • La copertura (1/n, n/n+1) è aperta 
  • l’intervallo [0,1] è chiuso
  • la sottocopertura (-1/3,1/3)∪(0,1)∪(2/3,4/3) è di numero limitato
  • ⇒ A è compatto

#An7 Teorema di comprensione metrica


Legenda: 

  • p = punto
  • ∂E = frontiera di E
  • E’ = insieme derivato ovvero insieme dei punti di accumulazione di E 
  • Ec = insieme complementare di E

Qualsiasi insieme E ⊆ X (in R^n) abbiamo che E∪∂E ⇔ E∪E’

dimostriamo per prima ⇒ :

E∪∂E ⇒ E∪E’: dall’enunciato è sicuro che p∈ E, ma se appartenesse ad E e basta non avrebbe senso l’implicazione stessa, quindi  possiamo ipotizzare che ∉ E. questo significa che p∈ ∂E∩E’  

  1. p∉ E, questo significa che sta nella frontiera ∂E
  2. stare nella frontiera ∂E significa due cose: o essere isolato, oppure di accumulazione
  3. essere isolato non porta alla risoluzione quindi
  4. se p∈E’ allora ∃ un punto q≠p t.c q stia all’interno della bolla B(p,r), il che equivale a dire che E∪∂E ⇒ E∪E.

e per seconda:

E∪E’ ⇒ E∪∂E: se so che

  1. p∈E’ 
  2. essere di accumulazione significa stare sulla frontiera sia di E che di Ec t.c ∂E=∂Ec allora
  3. p∂E il che prova E∪E’ ⇒ E∪∂E

Conclusioni

  1. se E∪E’ è chiuso ⇒ Ec aperto
  2. se E∪E’ è aperto ⇒ Ec chiuso

tutto dipende dalla frontiera se è inclusa o no nell’intervallo

#5AN sp4zio M3tric0


  1. Sia p∈Q e p∈I, I =numeri irrazionali e quindi complementare di Q ⇒ ∂Q = ∂I = R

Questo è sempre vero perché in una bolla B(p,r) (punto p e raggio r) la distanza d(p-r,p+r) avrà sempre dei punti razionali/irrazionali che apparterranno all’elemento di frontiera di uno o dell’altro insieme(Q ed I), conseguentemente è vero anche

2) il punto di frontiera ∂ ∃ necessariamente in Q∩I

glass-ball-1813707_960_720-e1541271483473.jpg

3) un punto o è di accumulazione o è isolato

un punto isolato significa 0<s<min[d(p,xn)]. Senza disegno immaginatevi che il punto p∈A sia una bolla di raggio s; e che questo s sia minore del minimo della distanza tra il suo centro p ed un centro di un’altro elemento x preso n finite volte ad esempio 6. Da qui ne consegue che

4) Se A è finito ⇒ A’ finito (e viceversa)

dove A’ è l’insieme dei punti di accumulazione o insieme derivato.

img_56431-e1519639041130.jpg

5) A è chiuso ⇔ A’ ⊆ A

(X,d) metrico, ed A’ è l’insieme dei punti di accumulazione. Abbiamo la nostra bolla B(p,r) ed un nostro elemento x preso all’interno dello spazio metrico stesso. Ora ricordate il punto 3? Se il raggio della bolla B(p,r) era > della distanza minima d(p,xn) allora si aveva un punto di accumulazione? Bene se questo punto è un sottoinsieme di A allora A è chiuso ed Ac è aperto, altrimenti viceversa.
Ad esempio pensate all’insieme

E = {x∈X : d(p,x) <4}    ed il suo complementare    Ec = {x∈X : d(p,x) ≥4}

Qualsiasi punto p che prenda all’interno di E, per quanto vicino possa essere all’estremo superiore 4, il suo raggio non lo raggiungerà mai; questa fa sì che 4 sia un punto di accumulazione che ∉ E ma bensì al suo complementare che lo include col segno ≥. Perciò l’insieme derivato E’⊆Ec, ed Ec è chiuso, mentre E è aperto.

W.Szymborska-cop

6) Â = A ∪ A’       si chiama chiusura di A

esempi sono:

  • A = Q   ⇒   Â = R 
  •  Â = B(p,r) = {x∈Rˆn : ||p – r||≤ r }, che è l’unione degli insiemi E ed Ec

La chiusura possiede delle proprietà ovvie riferite anche a famiglie di insiemi e le loro unioni ed intersezioni, quindi considerano uno aspetto più ampio.

diamA = sup d(x,y)  oppure  diamA =  supA – infA      per      x,y ∈ A

immaginate due punti su di una retta R e prendete gli estremi superiori. La distanza che ne intercorre è il diametro dell’insieme A.

Se A< +∞ ⇒ A è limitato
Se diamA = 0    ⇒    A = {a}   elemento singolo

  • se l’elemento singolo è l’insieme A  ⇒ supA – infA = 0
  • se supA – infA ≠ 0 ⇒ ∃ε>0 che funge da gap per almeno i due punti estremi del diamA! In questo caso abbiamo che diamA ≤ sup d(x,y) dove x ed y sono B(x,r) e B(y,s), ne consegue che
  • diamA = diamÂ, dove supA – infA – 2ε < sup d(x,y) 
bibliografia
analisi matematica - soardi