#8An – l’importanza delLa Frontiera


se Accumulazione E'

Espressione Canonica:   ∂A ∪ A°c

  • A°: punti interni ad A
  • ∂A: la frontiera di A
  • A°c: punti interni all’insieme complementare Ac

immagino il seguente intervallo A: [0,1]
lo 0 è incluso nell’intervallo e rappresenta non solo il lim.inf. ma anche minimo e minorante, mentre l’1 è lim. sup., massimo e maggiorante 

A°complementare è (-∞,0) ∪ (1,+∞) = Ac

(1/n, n/n+1) è una copertura non adatta perché sostituendo una n arbitrariamente grande l’intervallo (0,1) si allarga sempre più senza raggiungere i punti estremi, quindi per coprirlo dovrei scrivere {0}∪(1/n, n/n+1)∪{1}; posso formare una sottocopertura di n finiti intervalli, per esempio: (-1/3,1/3)∪(0,1)∪(2/3,4/3). In questo modo lo rendo compatto 

è semplice capire che all’aumentare di n la funzione tende a sx a 0 ed a dx ad 1 rendendo le frontiere ∂A dei punti di accumulazione (A’) 

Grazie al teorema di comprensione metrica #An 7 so che un punto di accumulazione è quella bolla di punto p e di raggio r che intersecata con E ha al suo interno (per qualsiasi raggio ε>0) infiniti punti x∈E; inoltre i punti di accumulazione appartengono sempre alla frontiera ∂A che nel nostro caso [0,1] è interna all’intervallo rendendolo Chiuso!

  • La copertura (1/n, n/n+1) è aperta 
  • l’intervallo [0,1] è chiuso
  • la sottocopertura (-1/3,1/3)∪(0,1)∪(2/3,4/3) è di numero limitato
  • ⇒ A è compatto

Considerazioni sulla risoluzione di esercizi sul campo di Gauss


Sun Tzu diceva “colui che capisce quando è il momento di combattere e quando non lo è, sarà vittorioso”, anche se senza dubbio cavarsela con calcoli più o meno complicati dà soddisfazione.

La frase è tanto bella e piena di significato solo per chi di calcoli ne ha fatti a tonnellate ed accertato che, per sapere quando combattere bisogna per lo meno esser scesi in campo, vedere che aria tira e sbattere la testa in continuazione per cavarne una soluzione decente, la strada del sapere “quando” scendere rischia di diventare non una battaglia ma una vera e propria guerra a volte troppo dura.

 Se parliamo poi di numeri complessi, che ahimè si affrontano solo a fine percorso semi-obbligatorio per non dire universitario, allora la faccenda diventa complicata.

un po’ di consigli pratici

  • z = (x+iy)
  • |z|=√x²+y² , che corrisponde alla lettera greca ρ (rho) ed è una distanza in C dal centro (0,0)
  • iz = ruoto di π/2 in senso antiorario il punto z
  • -iz = ruoto di π/2 in senso orario il punto z
  • 1/z * zc/zc = zc/|z|² —> moltiplicando N e D per zconiugato ottengo al N zconiugato ed il quadrato del modulo al D 
  • z*zc = |z|²
  • |z-1-i| ricordatevi che è uguale a |z-(1+i)|, cioè 1+i=w, altro numero complesso; tutto può essere tradotto come |z-w|=|z|-|w|
  • per esempio z²³, quindi z alte, usate la forma esponenziale: elevate il modulo e moltiplicate l’argomento per 23
  • √z<0 ha comunque 2 soluzioni 
  • i²¹ ricordarsi che dopo i^4 i risultati si ripetono
  • u=1/z è quasi sempre una circonferenza