#E4 – An – Funzioni, Successioni con 2 Carabinieri: fuNerali Astratt1


IMG_20181209_164524

  1. questa successione ha come numeratore la parte intera [] di logx che è una funzione che associa ad ogni x∈R la sua parte intera minore o uguale in N (es: 2,3=2.  4,8=4. 3=3). 
    Detto questo sostituisco all’intera la lettera q che elevata alla n mi identifica la funzione di entità geometrica.
    Sappiamo inoltre che per sapere se una successione converge dobbiamo mettere il modulo <1 (attenzione il modulo e non la serie stessa perché consideriamo sempre i valori positivi della funzione).
  2. sviluppando questo tipo di ragionamento, mettendo sia il modulo positivo che negativo della serie <1, ottengo che la [funzione] esiste in (-2,2) esclusi perché il 2 al denominatore l’ho portato su sia a dx che a sx
  3. se il log di x(argomento) è in base e ⇒ x è compreso tra e elevato alla -1 e 2 visto che la parte intera -1 (eˆ-1 = 1/e = 1/2,71828 … =0,367879 …) 

img_20181209_164524-e1544372973369.jpg
IMG_20181209_164524
img_20181209_1645242.jpg

  1. 4) per q≠0 e 1 direi anche posso verificarne la somma. infatti la q la posso scomporre in prodotto di due q sommandone gli esponenti
  2. 5) qˆn lo posso portare fuori dalla sommatoria lasciando sotto qˆm. In realtà questo passaggio di mezzo potrebbe fuorviare l’attenzione, ma basta guardare che il qˆk che moltiplica la sommatoria di un (q)ˆn-k dà esattamente ciò che c’è scritto nel punto 6; è un po’ come fare (2)ˆ2 = (2)ˆ3-1!
  3. 6) quindi prendo in considerazione soltanto le sommatorie che da n=2→∞ e cioè quella che mi definisce il limite della serie.

Esercizi 2 e 3

img_20181209_164551-e1544377813300.jpg

  1. ricorda vagamente il limite notevole di e quindi la serie stessa sembra suggerirmi la strada. per prima cosa ribalto 2/n ottenendo il reciproco; poi scompongo n=1*n= n/2*2/n (che fa 1) * n
  2. a questo punto i giochi son fatti perché per ottenere e basta avere sia al denominatore che all’esponente la stessa cifra
  3. infatti eˆ(2/n)*n = eˆ2 😉

img_20181209_1645511.jpg

  1. sembra che tutta la successione vada a +∞ ma in questo limite, dove so che n tende a +∞ il termine da studiare è senza dubbio sinπ, che è una funzione che sta tra [-1,1]
  2. capito il contesto in cui agire i famosi 2 carabinieri mi portano il lim della mia funzione sinπ →0 

img_20181209_201340.jpg

  1. A) per k=1 la successione tende a 1 e non a 0 (n/n) quindi non converge
  2. B) per k=3 invece con il criterio dell’assoluta convergenza, che grazie al valore assoluto elimino l’elemento disturbante (-1)ˆn, riesco a determinarne l’assoluta convergenza con il confronto asintotico
  3. C) il caso k=2 è particolare, perché sostituendolo mi risulterebbe un confronto asintotico che mi porta la successione a divergere verso +∞. In questo caso posso chiamare in causa il criterio di Leibniz la cui presente successione ne rispetta i presupposti:
    – An→0, per n→+∞
    – An≥0ora devo solo porre An+1 ≤ An ed i calcoli mi portano ad un risultato definitivamente positivo, cioè oltre al Δ/2 della formula finale dove la successione converge debolmente a +∞. 😉

#E3 – #A10: P(n-1)+ è la stessa cosa + P(n+1)


Qui sono esemplificati i due metodi induttivi (induzione ed induzione forte) 

  • (A): P(n-1)+P(n) = P(n)
  • (B): P(n) + P(n+1) = P(n+1)
  • grigio + verde = Ipotesi = Tesi

2018-09-28_11-38-54_595.jpg

La Saggezza nei Tentativi: Così nasce l’Amore dalle Probabilità


Esiste una Frequenza Relativa ed una Frequenza Probabile in tutti gli eventi.
La prima differisce dalla seconda dal numero esiguo di tentativi, faccio un esempio: Su 10 calci di rigore ne segnante 6 che, ipotizzando l’aleatorietà del fatto, vi conferma il 60% di successo; ma supponete di tirarne 1000 e qui fate ben 562 reti, il 56,2%. In questo caso la vostra Frequenza Relativa si trasforma in Frequenza Probabile proprio perché nella legge dei grandi numeri non si arriverà mai ad un risultato secco come 60%, ma ogni calcolo probabile oscillerà intorno al 60% propio come nel secondo esempio e questo grazie ai Tentativi, e quindi al tempo, che cambia il corso degli eventi coi i suoi risultati.
Ma la Probabilità, come nell’articolo Il Pensiero Positivo delle Probabilità è uno status mentale. Lanciando una moneta abbiamo il 50% di fare croce come testa; più lanci si fanno e più la % non sarà del 50% secco ma oscillerà a seconda del “caso” che, sebbene non esista, in matematica possiamo stabilirne con probabilità epistemica quindi quasi certa.SONY DSC

Esistono 2 tipi di Probabilità su Eventi …

  1. incompatibili – pari o dispari → P(A∩B) = 0, infatti la probabilità che escano contemporaneamente insieme è 0
  2. compatibili – dispari o multiplo 3 compreso tra 0 e 10 → P(A∩B) = 3/5

Ora, molti enunciati non sono chiari ma quando ci troviamo davanti a ” pari o dispari”, “settembre o novembre”, “mare o montagna”, “7 o 8″, si sommano le singole probabilità sottraendone l’in/compatibilità temporale che i due risultati accadano simultaneamente.

P(A∪B) = P(A) + P(B) – P(A∩B)
formula generale delle probabilità

dalla formula all’esempio: per trovare P(A∪B) sommiamo la probabilità che dal lancio della moneta risulti pari (1/2) con la probabilità che risulti dispari (1/2) e sottraiamo la probabilità che simultaneamente sia pari che dispari quindi l’intersezione dei due eventi (0). Il risultato (1) è la probabilità che lanciando una moneta si abbia pari o dispari = 1*100=100%
NB.
Figurativamente parlando il termine Incompatibili significa che temporalmente al verificarsi dell’evento è possibile avere solo una delle due Probabilità

mostra-duchamp-dalc3ac-e-magritte-640x342.jpg

Negli eventi compatibili (punto 2) notiamo subito che la parte P(A∩B) è ≠ 0 perché può capitare simultaneamente che escano numeri dispari P(A) e multipli di 3 P(B). così abbiamo:

P(A) = {1,3,5,7,9} → 5/10
P(B) = {3,6,9} → 3/10
P(A∩B) = {3,9} → 2/10
P(A∪B) = {1,3,5,6,7,9} → 6/10

seguendo la formula generale delle probabilità il risultato è il seguente:

5/10 + 3/10 – 2/10 = 6/10 = 3/5

… che possono risultare a volte …

  1. indipendenti tra loro – Che Probabilità ho di ottenere 5 e CROCE se lancio un dado ed una moneta
  2. dipendenti tra loro – Probabilità di scegliere due fiches rosse da 12 fiches rosse e 8 fiches nere

eventi

Per trovare la P di eventi indipendenti basta moltiplicarne le due singole probabilità tra loro es: P(A) = 1/6 per il tiro del dado di ottenere un numero desiderato con P(B) = 1/2 di avere testa o croce nel lancio di una moneta. Quindi P(A∩B) = P(A) *P(B) = 1/12

salvadordali

Diversamente calcolare la probabilità di due eventi dipendenti quindi di scegliere due fiches rosse su 12 fiches rosse ed 8 nere richiede un requisito già visto: Il calcolo fattoriale.

Perché?
Se è vero che le probabilità di calcolano attraverso il rapporto tra

casi favorevoli / casi possibili

se scegliessi un caso casualmente favorevole di conseguenza la probabilità di sceglierne un’altro simile tra i casi possibili cambierebbe istantaneamente; perciò ho bisogno di permutare il risultato al cambiare degli eventi. Quindi:

12! / 2!(12-2)! / 20! / 2! (20-2)!

12/20 * 11/19 è il risultato

Alquanto strano ma comprensibile se li vediamo singolarmente: infatti 12/20 è il 60% di probabilità di scegliere una fiches rossa al primo turno e che scende al 57,89% (11/19) nel sceglierne un’altra sempre rossa al secondo turno; questo perché il la mia scelta non è più tra 20 ma tra 19; quindi se andassimo avanti … per esempio (10/18) = 55,55%, così via.
Generalizzando questa dinamica viene chiamata Probabilità Condizionata e si calcola così:

P(A∩B) = P(A) * P(B|A)

P(B|A) si legge Probabilità che succeda B tenendo conto che è successo A

#A8-#E


IMG_5746

Nel primo esercizio basta notare le analogie che stanno nell’uguaglianza dei due coefficienti per capire che forse è inutile stare a trasformare le permutazioni, quindi bastano pochi passaggi algebrici per capire che la soluzione è più vicina di quanto sembri

Nel secondo esercizio le condizioni di esistenza devono essere x≥4, quindi al primo passaggio sostituiamo la formula base coi valori dei seguenti coefficienti binomiali. Poi permutiamo il 4 al primo denominatore così lo si elimina; sotto permutiamo invece la serie x! per eliminare il (x-4)! sempre al den., mentre al di là dell’uguale facciamo lo stesso con (x-3)!
semplifichiamo algebricamente i fattori comuni, moltiplichiamo lo stesso denominatore *6 così lo possiamo eliminare per trovarci con un semplice passaggio ad x-3=5, x=8 che è ≥4 

img_5734-e1522265310583.jpg

Al primo passaggio attuiamo la sostituazione alla formula madre n! / k!(n-k)!. nb. la seconda freccia verde in alto: sostituzione di k-1 e n-1 alla k di (n-k)! risulta [n-1-(k-1)]! cioè  [n-1-k+1]! quindi (n-k)!

So che (n-k)! = (n-k)(n-1-k)! e sostituisco
so che k! = k(k-1)! e sostituisco

effettuo il denominatore comune al penultimo passaggio e semplificando mi ritrovo la formula iniziale n! / k!(n-k)!
uguaglianza verificata con successo