#A10-#E Relazioni di Equivalenza


Si consideri in Ζ^z:{f che va da Z→Z di f funzioni} la relazione fℜg ⇔ ∀x∈Ζ di
f(x) – g(x) tale che siano divisibili per 3. Dire se:

  1. fℜg è di equivalenza?
  2. se prendessi f(x)=x e g(x)=x² allora fℜg è sempre di equivalenza?
  3. trovare la f≠g (in relazione con f(x)=1 ∀x∈Z che deve essere f(x) – g(x) = divisibile per 3)

sole-luna.jpg

L’enunciato del problema va tradotto: Z^z è una classe di funzioni, quindi un’intera armata di x che vanno in Y che rispettano questa legge f(x) – g(x) = 3κ (perché se è divisibile per 3 avrò una κostante ∈Z al di là del uguale)

Quindi posso riscrivere la funzione come f(x) – g(x) = 3κ affermandola come Tesi 

IMG_20180829_225532

  1.  fℜg per essere di equivalenza la tesi deve rispettare le proprietà riflessiva, simmetrica e transitiva. ∀x∈Z Quindi:
  •  fℜf  :      f(x) = f(x) che dà f(x) – f(x) = 0*k            ∀k∈Z   

Banalmente vera perché risulta 0=0 quindi riflessiva per il dominio 0∈Z

  • fℜg = gℜf :       f(x) – g(x) = – [g(x) – f(x)]   che dà                                  ∀k∈Z
  • f(x) – g(x) = g(x) – f(x) 
  • – (1*3) = 3*(-1)  che è sempre divisibile per 3

ho eseguito i seguenti passaggi perché se moltiplico *-1 che ∈Z e risolvo algebricamente l’espressione si ribalta.

  • fℜg e gℜh ⇒ fℜh :      f(x) – g(x)  e  g(x) – h(x) ⇒  f(x) – h(x) =                        ∀k∈Z
  • f(x) – g(x) = 3κ
  • g(x) – h(x) = 3q
  • f(x) – g(x)g(x) – h(x) = 3κ + 3q 
  • f(x) – h(x) = 3(κ+q)   che è sempre divisibile per 3

in conclusione il fatto che esistano delle funzioni con una relazione di equivalenza che portino le x∈Z in Z tramite funzione (x) – funzione (x)  a qualcosa (κ) che moltiplichi per 3 è scontato che se il risultato è divisibile per 3 allora la tesi è soddisfatta.

Cosa non sodisfatta per la seguenti funzioni

cropped-dali2.jpg

2.   f(x) = x    e    g(x) = x²                          ∀k∈Z

  • fℜf :  f(x) = f(x) , f(x) – f(x) = 0 *3      ok
  • fℜg = gℜf : f(x) – g(x) = g(x) – f(x)
  • x – x² = – (x² – x)
  • x – x² = 3κ
  • x = 1,     1 – 1² = 0
  • x = 2,    2 – 2² = 2² – 2 ,       -2 = 2?     che non è divisibile per 3

Quindi con l’ipotesi simmetrica fℜg ≠ gℜf decade sia l’equivalenza che la tesi

sole-luna.jpg

3.   abbiamo la f(x) = 1, quindi la sostituisco subito all’interno dell’equazione:

  • 1 – g(x) = 3κ
  • – g(x) = 3κ – 1
  • g(x) = 1 – 3κ 

trovata la g(x) che è diversa dalla f(x) come richiede l’enunciato, ora devo solo sostituirla e vedere se la tesi, il risultato, è vera cioè divisibile per 3

  • f(x) – g(x) = 3κ
  • 11 – 3κ  = 3κ

– 3κ    3κ ma la tesi è comunque dimostrata! 🙂

#10A relazioni: Equivalenza, Preordine ed Ordine


Si chiamano relazioni di Equivalenza quando hanno una funzione binaria ℜ su di un insieme X e soddisfano le 3 seguenti proprietà:

  • riflessiva – aa
  • simmetrica – ab = ba
  • transitiva – ab = bc ⇒ ac

e ad ogni ℜ si associano elementi tra loro che costituiscono una classe di equivalenza :

[a]Þ = { x∈X : xa }

IMG_5653

l’immagine si riferisce alla funzione biunivoca verde che dall’insieme delle classi di equivalenza ζR porta all’insieme Y e definisce l’applicazione obbligatoriamente suriettiva (rossa). X/R o X/∼ è l’insieme quoziente che viene chiamato così perché raduna tutti gli elementi (quanti) che hanno una relazione canonica π tra loro. infatti:

π(a) = [a]ℜ

Separatore-Grigio

Una relazione di preordine si ha tra elementi e risulta totale rispetto agli insiemi in quanto a≤b ≠ b≤a e non altro, mentre A⊂B può essere anche B⊂A a seconda degli elementi al loro interno.

Il preordine è dato agli elementi di un insieme se rispettano le seguenti leggi:

  • a≤a
  • a≤b, b≤c ⇒ a≤c

Se possiedono anche la proprietà simmetrica a≤b = b≤a allora dal preordine passiamo all’ordine (in questo caso di equivalenza)

Spostandoci oltre con la relazione d’ordine  su N, provare che x+1≤y è vera ⇔ esiste una n>0 tale che x+n=y è uguale a scrivere x+1+n-1 =y ovvero 

s(x)*s^n-1 = s^n(x)

img_5699.jpg

quindi tramite induzione e ipotizzando una n∈N sommata ad x otteniamo una relazione d’ordine. l’esempio soprastante per n=4 fissata figurativamente un’applicazione tra gli insiemi (S= successivo) S^n-1 ed S^0(1)

Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica

 

 

#8A Permutazioni e coefficienti Binomiali


Riassumendo il concetto una permutazione è un’applicazione iniettiva da un insieme finito X ad un’altro insieme finito Y dove ad uno ad uno che le x∈X vengono applicate alle y quest’ultime  saranno sempre meno da trovare in Y. La formula è la seguente:

n! = n (n-1) (n-2) (n-3) … (n – i +1)

nel quadrato di un binomio come (a+b)² = a²+2ab+b² il 2 è la permutazione di ab dove all’interno di un insieme finito di elementi abbiamo 2 modi di interpretare a*b che sono ab e ba. Nel caso di un binomio di terzo grado come (a+b)³ le rispettive permutazioni di a²b e ab² sono in quanto abbiamo solo 3 opzioni di combinazione fra loro: a²b = (aab + aba + baa) e ab² = (bba + bab + abb).

Quindi di può asserire che le permutazioni formano delle partizioni all’interno di un insieme finito chiamate più comunemente Coefficienti. Nel nostro caso Binomiali.
La formula
per stabilire un coefficiente binomiale è ricavata tramite il principio di induzione dell’insieme delle parti dove all’interno di ogni C stanno tutte le possibili permutazioni al variare degli elementi n dell’insieme.

Va da sé che C è una partizione di X = {C i∪¥ i,jI : X = P(X)}

Questa relazione stretta tra Insieme delle parti, partizione di un insieme e permutazioni portò Isaac Newton a formulare l’equazione dei coefficienti binomiali dove l’intera relazione trova nella sommatoria ed in condizioni di esistenza 0≤k≤n dei vari coefficienti, una elegante e non scontata coerenza.
In sintesi ragioniamo sugli esponenti che corrispondono al numero di elementi di ogni partizione, sui coefficienti come quantità di “possibili formazioni” in relazione agli elementi stessi e con la sommatoria come segmento da traslare avanti ed indietro nell’espressione, ed avremo unito per induzione ben tre concetti in uno!

IMG_5662

seconda riga si sostituisce (a+b)^n con la sommatoria analoga. terza riga si moltiplica la sommatoria per a e b in verde, poi si opera sull’ordine della sommatoria. quarta riga si raccolgono i coefficiente grazie all’uguaglianza di a^n-kb^k e poi si sommano. ultima riga aggiungo i termini estremi a^n e b^n ristabilendo il numero di elementi della sommatoria totale.

esempio:

  • (a+b)³ = insieme X
  • a³ + 3a²b + 3ab² + b³ = partizioni di X
  • 3 = Coefficiente Binomiale = numero permutazioni possibili
  • a²b = elementi del sottoinsieme relazionato al CB (in questo caso 3)
Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica