#3AN Campo Ordinato Completo = R


Un campo è una struttura algebrica con una costante e due operazioni: (k,*,+)     ∀k∈K

che rispetta le seguenti proprietà: Associativa, Commutativa, Distributiva, Elemento Neutro. Un esempio di campo è l’insieme dei numeri razionali Q.

Ordinato perché possiede una relazione “<” che soddisfa le seguenti proprietà: 

Transitiva – se a<b e b<c ⇒ a<c    ∀a,b,c ∈ K,     ne segue che l’elemento neutro per la moltiplicazione “c>0∈N” non ne cambia la l’ordine

Se a≠b ⇒ a<b ∨ b<a

IMG_20180829_225532

Completo perché assume il teorema di completezza: se A⊂R (A• assunto come l’insieme dei maggioranti di R) Superiormente Limitato allora A• ha un minimo. Viceversa se (A∝ assunto come l’insieme dei minoranti di R) Inferiormente Limitato allora A∝ ha una massimo.

Dimostrazione:

  • Sia A⊂R, A sup lim: A•={x∈R :x≥a, ∀a∈A} ≠ ∅            (definizione dell’insieme dei maggioranti come non vuoto)
  • scelgo il minimo dei maggioranti di A• scegliendo la minima cifra tra 0 e 9 delle varie parti di cui è composto il numero: β = c0,c1 c2 c3 c4 c5 … ck-1, ck, xk+1,xk+2 ..
  • Prendo un’ipotetico numero σ = c0,c1 c2 c3 c4 c5 …ck……
  • confronto β e σ: se σ possiede una cifra a ck-1 = 9 allora per il teorema dei resti avremo un numero 9 periodico che ∉R in quanto ck-1,ck,xk+1,xk+2 ecc saranno 9 anche loro.
  • Per assurdo assumo che σ A• allora esiste un numero ϒ>σ t.c. la k-esima cifra di ϒk>ck, ma allora σ>β!! e non ho scelto il minimo elemento dell’insieme dei maggioranti!
  • quindi σ=β oppure le loro k-esime cifre sono ck<bk t.c. σ≤β
  • lo stesso procedimento è possibile affrontarlo con l’insieme dei minoranti

drops_water_water_drop_water_drops_blue_liquid_rain_clean-1276466.jpg!d

esempio

dimostrare che 1 è estremo superiore di A={∀n∈Q : (n-1)/n ≤1} o SupA=1

Sapendo che avere un estremo superiore vuol dire ammettere dei maggioranti; in questo caso da enunciato è esplicito che l’1 è il minimo dei maggioranti, ma per dimostrarlo vado per gradi.

Come prima domanda qual è la tesi dell’enunciato?

  • (n-1)/n ≤1 oppure SupA = 1

Se per ogni n appartenente a Q che sostituisco mi dà la disuguaglianza (n-1)/n≤1 allora 1 è il mio estremo superiore. E per dimostrarlo nego la tesi P.A. (per assurdo) dicendo che 1 non è SupA, quindi che Esiste un numero ε>0 che sottratto a 1 mi dà un’estremo superiore magari > (n-1)/n della seguente disuguaglianza:

1-ε   <(n-1)/n   ≤1

invece dopo opportuni calcoli mi risulta n>1/ε il che è sempre vero sempre perché stiamo all’interno dell’insieme Q dei razionali e conseguentemente

1/ε  <n  ≤1

1-ε è quell’elemento supposto massimo all’interno dell’insieme A e che sarà sempre minore di (n-1)/n per qualsiasi ε>0 io prenda. in altre parole avrò sempre un elemento massimo tra 1-ε ed 1 cioè (n-1)/n.

è il minore dei maggioranti? Sì perché se porto l’1 dentro all’insieme A: (n-1/n) – 1≤0 ottengo -1/n ≤0 sempre vero. Per quanto mi possa avvicinare ad 1 al massimo raggiungerò (n-1)/n per ogni n∈N.

#A10-#E Relazioni di Equivalenza


Si consideri in Ζ^z:{f che va da Z→Z di f funzioni} la relazione fℜg ⇔ ∀x∈Ζ di
f(x) – g(x) tale che siano divisibili per 3. Dire se:

  1. fℜg è di equivalenza?
  2. se prendessi f(x)=x e g(x)=x² allora fℜg è sempre di equivalenza?
  3. trovare la f≠g (in relazione con f(x)=1 ∀x∈Z che deve essere f(x) – g(x) = divisibile per 3)

sole-luna.jpg

L’enunciato del problema va tradotto: Z^z è una classe di funzioni, quindi un’intera armata di x che vanno in Y che rispettano questa legge f(x) – g(x) = 3κ (perché se è divisibile per 3 avrò una κostante ∈Z al di là del uguale)

Quindi posso riscrivere la funzione come f(x) – g(x) = 3κ affermandola come Tesi 

IMG_20180829_225532

  1.  fℜg per essere di equivalenza la tesi deve rispettare le proprietà riflessiva, simmetrica e transitiva. ∀x∈Z Quindi:
  •  fℜf  :      f(x) = f(x) che dà f(x) – f(x) = 0*k            ∀k∈Z   

Banalmente vera perché risulta 0=0 quindi riflessiva per il dominio 0∈Z

  • fℜg = gℜf :       f(x) – g(x) = – [g(x) – f(x)]   che dà                                  ∀k∈Z
  • f(x) – g(x) = g(x) – f(x) 
  • – (1*3) = 3*(-1)  che è sempre divisibile per 3

ho eseguito i seguenti passaggi perché se moltiplico *-1 che ∈Z e risolvo algebricamente l’espressione si ribalta.

  • fℜg e gℜh ⇒ fℜh :      f(x) – g(x)  e  g(x) – h(x) ⇒  f(x) – h(x) =                        ∀k∈Z
  • f(x) – g(x) = 3κ
  • g(x) – h(x) = 3q
  • f(x) – g(x)g(x) – h(x) = 3κ + 3q 
  • f(x) – h(x) = 3(κ+q)   che è sempre divisibile per 3

in conclusione il fatto che esistano delle funzioni con una relazione di equivalenza che portino le x∈Z in Z tramite funzione (x) – funzione (x)  a qualcosa (κ) che moltiplichi per 3 è scontato che se il risultato è divisibile per 3 allora la tesi è soddisfatta.

Cosa non sodisfatta per la seguenti funzioni

cropped-dali2.jpg

2.   f(x) = x    e    g(x) = x²                          ∀k∈Z

  • fℜf :  f(x) = f(x) , f(x) – f(x) = 0 *3      ok
  • fℜg = gℜf : f(x) – g(x) = g(x) – f(x)
  • x – x² = – (x² – x)
  • x – x² = 3κ
  • x = 1,     1 – 1² = 0
  • x = 2,    2 – 2² = 2² – 2 ,       -2 = 2?     che non è divisibile per 3

Quindi con l’ipotesi simmetrica fℜg ≠ gℜf decade sia l’equivalenza che la tesi

sole-luna.jpg

3.   abbiamo la f(x) = 1, quindi la sostituisco subito all’interno dell’equazione:

  • 1 – g(x) = 3κ
  • – g(x) = 3κ – 1
  • g(x) = 1 – 3κ 

trovata la g(x) che è diversa dalla f(x) come richiede l’enunciato, ora devo solo sostituirla e vedere se la tesi, il risultato, è vera cioè divisibile per 3

  • f(x) – g(x) = 3κ
  • 11 – 3κ  = 3κ

– 3κ    3κ ma la tesi è comunque dimostrata! 🙂

Messaggio Non-Euclideo


Ieri sera stavo seduto sul terrazzino ed all’improvviso ho notato questo triangolo nel cielo e mi sono immaginato se da fuori fosse stato così piano come da “dentro”:

img_20180802_1938221733375567.jpg
si noti bene il triangolo nel cielo – foto scattata alle ore 19:22 del 02/08/2018

IMG_20180803_095856

IMG_20180803_100740

Bibliografia: l’equazione di Dio – Amir D.Aczel