Come siete Serie


Successioni e Serie sono il modo astratto per spiegare una parte della probabilità degli eventi e della struttura fisica del mondo.
Non mi dilungherò su tale argomento ma vorrei fare delle piccole considerazioni trasversali che occupano questo braccio della matematica.

criterioGli argomenti son molti e tutti di eguale importanza perciò parto dai concetti primari: distinzione tra criterio e condizione.
Un criterio è un giudizio la condizione è un accordo, perciò dal n1 al n5 io stabilisco senza equivoco che “quella cosa” va in una determinata direzione piuttosto che in un’altra mentre l’unica condizione ammessa nella tabella è quella di Cauchy.

Se ben ricordo la struttura di una dimostrazione si avvale sempre di una ipotesi necessaria e di una tesi sufficiente; in pratica è sufficiente avere una tesi per dimostrare una proposizione oppure allo stesso tempo una ipotesi necessaria per formulare una tesi. Morale? “non ti basta un’ipotesi. devi avere una tesi per dimostrare.

Specificato questo, se la mia condizione per ipotesi è quella di Cauchy allora ho il primo passo necessario per dimostrare appunto la convergenza di una serie. Infatti:

  • ∀ε>0       ∃nº    ∀m,n ≥nº    :d(Xn,Xm)<ε
  • d(Xn,Xm) ≤ d(Xn,p) + d(Xm, p) <ε
  • |Ak-Ah| <ε    per pº≤p

dicono la stessa cosa ed hanno come elemento cardine che separa “la distanza” tra la successione/serie dal raggio ε.
In quanto ipotesi è necessaria ma non sufficiente per dimostrare la convergenza e questo dipende “quanto velocemente” la serie mi tende ad un limite: il controesempio è qui sotto e ritrae il confronto tra due (e qua mi scuso) funzioni che mostrano l’andamento della convergenza ad 1 di 1+1/x² rispetto a 1+1/x per il calcolo del Limite.

dffdfdf

Quindi per le serie convergenti una condizione necessaria ma non sufficiente è quella di Cauchy, infatti spesso viene rinforzata da altri criteri e sono quelli della radice, del rapporto, di condensazione e di Leibniz (pt 1,3,4,5) usati a loro volta per stabilire il carattere della serie al variare del limite  0 <α  ≤1 oppure 1<α ≤+∞.
Il rapporto (pt1) è uno strumento polivalente perché esso mi dà sia informazioni sulle successioni se crescenti o decrescenti (se > o < di 1) ma anche sulla convergenza o divergenza delle serie, nonché sfrutta la decrescenza di valori tramite An+1<An per ipotesi per poi condensare il carattere della mia serie in una formula a partire da una restrizione della stessa. Di base il criterio di condensazione si usa per serie visibilmente convergenti già dall’inizio dove al numeratore abbiamo una costante che cambia di poco rispetto al denominatore, mentre il criterio della radice si avvale spesso del confronto in caso di convergenza perché se il limite della mia serie An²<α  è 0≤α<1 allora a maggior ragione An convergerà.

Il concetto di assoluta convergenza mi dice però che se il modulo delle somme della serie è assolutamente convergente allora la somma dei moduli è convergente. Questa “restrizione” dove prendo solo i valori positivi di una serie, come ad esempio in sin n, risulta indicatrice per tutti i valori della sommatoria, ma attenzione: ciò che è convergente non è detto che lo sia assolutamente, infatti basti pensare ad una serie a segno alterno dettata da per esempio (-1)^n* 1/n, dove 1/n è infinitesima all’aumentare di n ma non convergente in quanto serie armonica oltre che di riferimento.
Leibniz si avvale del rapporto di An/An+1 per dimostrare, come per le successioni, che la serie crescente sia convergente.
Pensare alla convergenza (An/An+1) come un treno in corsa ed alla crescita (1/n) come un passeggero che seppur correndo in direzione opposta, venga comunque converso.

Morale le ipotesi per il criterio di Condensazione e di Leibniz sono le medesime:

  • An > 0    ∀n
  • An ≥ An+1     ∀n

ma rispondono in maniera differente alla stessa domanda sulla natura della serie, con due sole differenza per Leibniz dove n →+∞ di An = 0 e la presenza di (-1)^n: l’elemento “sfarfallante” che obbliga la serie a tendere verso 0 sia da positivi che da negativi, dandomi informazioni sulle sottosuccessioni A2n > A2n+1, le quali rapportate al limite a cui tende il mio oggetto, rendono l’errore trascurabile al termine a2n+1 successivo qualsiasi cifra significativa io prenda in considerazione.

autumn-83761_640-696x376

Last but not least e come da ultimo esempio, ciò che per le successioni si determinano la crescita o decrescita, per le serie son la convergenza o divergenza, ed è la particolare attenzione che va quasi esclusivamente ai punti di accumulazione situati in prossimità di un limite che rendono in maniera capillare e metodico lo studio sulla convergenza stessa.

#E4 – An – Funzioni, Successioni con 2 Carabinieri: fuNerali Astratt1


IMG_20181209_164524

  1. questa successione ha come numeratore la parte intera [] di logx che è una funzione che associa ad ogni x∈R la sua parte intera minore o uguale in N (es: 2,3=2.  4,8=4. 3=3). 
    Detto questo sostituisco all’intera la lettera q che elevata alla n mi identifica la funzione di entità geometrica.
    Sappiamo inoltre che per sapere se una successione converge dobbiamo mettere il modulo <1 (attenzione il modulo e non la serie stessa perché consideriamo sempre i valori positivi della funzione).
  2. sviluppando questo tipo di ragionamento, mettendo sia il modulo positivo che negativo della serie <1, ottengo che la [funzione] esiste in (-2,2) esclusi perché il 2 al denominatore l’ho portato su sia a dx che a sx
  3. se il log di x(argomento) è in base e ⇒ x è compreso tra e elevato alla -1 e 2 visto che la parte intera -1 (eˆ-1 = 1/e = 1/2,71828 … =0,367879 …) 

img_20181209_164524-e1544372973369.jpg
IMG_20181209_164524
img_20181209_1645242.jpg

  1. 4) per q≠0 e 1 direi anche posso verificarne la somma. infatti la q la posso scomporre in prodotto di due q sommandone gli esponenti
  2. 5) qˆn lo posso portare fuori dalla sommatoria lasciando sotto qˆm. In realtà questo passaggio di mezzo potrebbe fuorviare l’attenzione, ma basta guardare che il qˆk che moltiplica la sommatoria di un (q)ˆn-k dà esattamente ciò che c’è scritto nel punto 6; è un po’ come fare (2)ˆ2 = (2)ˆ3-1!
  3. 6) quindi prendo in considerazione soltanto le sommatorie che da n=2→∞ e cioè quella che mi definisce il limite della serie.

Esercizi 2 e 3

img_20181209_164551-e1544377813300.jpg

  1. ricorda vagamente il limite notevole di e quindi la serie stessa sembra suggerirmi la strada. per prima cosa ribalto 2/n ottenendo il reciproco; poi scompongo n=1*n= n/2*2/n (che fa 1) * n
  2. a questo punto i giochi son fatti perché per ottenere e basta avere sia al denominatore che all’esponente la stessa cifra
  3. infatti eˆ(2/n)*n = eˆ2 😉

img_20181209_1645511.jpg

  1. sembra che tutta la successione vada a +∞ ma in questo limite, dove so che n tende a +∞ il termine da studiare è senza dubbio sinπ, che è una funzione che sta tra [-1,1]
  2. capito il contesto in cui agire i famosi 2 carabinieri mi portano il lim della mia funzione sinπ →0 

img_20181209_201340.jpg

  1. A) per k=1 la successione tende a 1 e non a 0 (n/n) quindi non converge
  2. B) per k=3 invece con il criterio dell’assoluta convergenza, che grazie al valore assoluto elimino l’elemento disturbante (-1)ˆn, riesco a determinarne l’assoluta convergenza con il confronto asintotico
  3. C) il caso k=2 è particolare, perché sostituendolo mi risulterebbe un confronto asintotico che mi porta la successione a divergere verso +∞. In questo caso posso chiamare in causa il criterio di Leibniz la cui presente successione ne rispetta i presupposti:
    – An→0, per n→+∞
    – An≥0ora devo solo porre An+1 ≤ An ed i calcoli mi portano ad un risultato definitivamente positivo, cioè oltre al Δ/2 della formula finale dove la successione converge debolmente a +∞. 😉