#6a insieme InFinito

Cos’è un insieme infinito?

Cantor e Dedekind hanno visioni analoghe e rispondono chiaramente formalmente alla domanda; ma mettiamo un po’ di chiarezza dove il linguaggio matematico nel spiegare l’ovvietà ci complica un po’ la comprensione.

cropped-uccelli-di-vinile-simbolo-infinito-jpg1.png

Parto da Peano in quanto se mi soddisfa i suoi 5 punti allora esiste qualunque insieme infinito concernente i numeri naturali N. Approfondiamo:

IMG_5637

Non esiste suriettività nella funzione s così come nella f che va da X —> X, quindi prendo una ed una sola x∈X\ f(X) (vedi sopra la x piccola in nero).
Sia F la famiglia di tutte le A⊆X tali che le loro funzioni f(A)⊆A, quindi anche X⊆A (per la regola dell’insieme delle parti) e che C siano invece quegli insiemi facenti parte della famiglia delle intersezioni di A tale che x∈C ed abbia un successore in se stesso s: C —-> C come restrizione di f.

  1. C∈N
  2. x∈N|s(x)∈N
  3. x∉s(C) perché x∉f(X)
  4. s ed f sono iniettive

per descrivere meglio il punto 5 introduco il concetto di ricursione con un esempio:

img_5645-e1519639099982.jpg

 

f(n) = s(n) ed è la sommatoria di tutte le n∈N che hanno la ƒ:  N —> X. 

  • la funzione produttoria = Γƒ ⊆ NxX (grafico) corrisponde all’intersezione di tutte le ƒ: N —->X raggruppate in una famiglia F
  • il termine ricorsivo sta nel riferimento a se stessa nella funzione dopo n = s(n), s(n) = ƒ(s(n)) ecc. che nel punto 5 soddisfa il principio d’induzione nella sua prima forma.
Bibliografia Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica

#3a composizione di Applicazioni

f: X —>Y e g: Y —>Z sono due applicazioni (o funzioni) dove Y coincide per f e g e la composizione, descritta dal simbolo °, si scrive così:

g ° f : X —> Z     per    (g°f)(x) = g(f(x)) per qualsiasi x in X

viene spesso chiamata applicazione prodotto perché è anche valevole in casi riflessivi sullo stesso insieme per cui f°(f°f) = (f°f)°f assume a tutti gli effetti come f^3 per la ovvia proprietà delle potenze.

 

Vediamo casi particolari in cui è valevole l’enunciato precedente f: X —>Y e g: Y —>Z:  

img_5607.jpg

  •   se g ed f sono suriettive allora anche g°f è suriettiva (a)
  •   se g ed f sono iniettive allora anche g°f è iniettiva (b)

img_5610.jpg

  • Il primo caso a sinistra abbiamo una funzione f : X —-> Y iniettiva e la sua inversa
    f^-1 = g : Y —-> X suriettiva. ciò è sempre possibile!
  • Nel secondo caso abbiamo un’identità dove la f : X —-> Y iniettiva ha una sua inversa g esattamente come lei. Da qui il particolare che se la f è biettiva (cioè sia suriettiva che iniettiva) allora tutta la funzione può essere invertibile.
  • Il primo caso se la f : X —-> Y è iniettiva allora anche la g°f è iniettiva; dove per ogni x,y appartenente all’insieme X abbiamo una f(x) = f(y) e di conseguenza una g(f(x)) = g(f(y)) = z
  • nel secondo caso se g : Y —-> Z è g(f(x)) ed è suriettiva. Se per ogni z appartenente a Z esiste una x appartenente a X tale che g°f(x)=g(f(x)), allora se f(x) soddisfa tutto l’insieme Y conferma così la suriettività dell’intero circuito perché g°f(x)=g(f(x)).
    Ne è un esempio anche il caso a) sopra illustrato

IMG_5624

  • prendendo come immagine mentale la foto sopraindicata sappiamo che la f(x)=y e la g(y)=x di conseguenza la g°f=id x e la f°g=id y 
  • la g°f = id x da non confondere con la g°f (x) perché altrimenti avremmo 3 insiemi come nei casi precedenti e non 2 
bibliografia
Dikran Dikranjan
Maria Silvia Lucido – Aritmetica e Algebra
Nepero

storie di teoremi reietti tra pensiero, spazio-tempo e natura

The Art of Blogging

For bloggers who aspire to inspire

Paolo Sassaroli - E - BOOK

Entra nel mondo delle pseudo favole di Paolo Sassaroli

ilripassinodimatematica

navigando tra le nuvole del pensiero matematico

Enterprises...

..."alla ricerca di nuove forme di vita e di civiltà, fino ad arrivare là dove nessuno è mai giunto prima"

AstronomicaMens

Le idee degli scienziati sull'Universo

Emozioni: idee del cuore

Raccontare le emozioni, attraverso il battito del cuore, perché la felicità è nascosta ma se troviamo la bussola scopriamo la strada giusta

OggiScienza

La ricerca e i suoi protagonisti

"Matematicandoinsieme" di Maria Cristina Sbarbati

La fantasia è più importante del sapere!

%d blogger hanno fatto clic su Mi Piace per questo: