Come siete Serie


Successioni e Serie sono il modo astratto per spiegare una parte della probabilità degli eventi e della struttura fisica del mondo.
Non mi dilungherò su tale argomento ma vorrei fare delle piccole considerazioni trasversali che occupano questo braccio della matematica.

criterioGli argomenti son molti e tutti di eguale importanza perciò parto dai concetti primari: distinzione tra criterio e condizione.
Un criterio è un giudizio la condizione è un accordo, perciò dal n1 al n5 io stabilisco senza equivoco che “quella cosa” va in una determinata direzione piuttosto che in un’altra mentre l’unica condizione ammessa nella tabella è quella di Cauchy.

Se ben ricordo la struttura di una dimostrazione si avvale sempre di una ipotesi necessaria e di una tesi sufficiente; in pratica è sufficiente avere una tesi per dimostrare una proposizione oppure allo stesso tempo una ipotesi necessaria per formulare una tesi. Morale? “non ti basta un’ipotesi. devi avere una tesi per dimostrare.

Specificato questo, se la mia condizione per ipotesi è quella di Cauchy allora ho il primo passo necessario per dimostrare appunto la convergenza di una serie. Infatti:

  • ∀ε>0       ∃nº    ∀m,n ≥nº    :d(Xn,Xm)<ε
  • d(Xn,Xm) ≤ d(Xn,p) + d(Xm, p) <ε
  • |Ak-Ah| <ε    per pº≤p

dicono la stessa cosa ed hanno come elemento cardine che separa “la distanza” tra la successione/serie dal raggio ε.
In quanto ipotesi è necessaria ma non sufficiente per dimostrare la convergenza e questo dipende “quanto velocemente” la serie mi tende ad un limite: il controesempio è qui sotto e ritrae il confronto tra due (e qua mi scuso) funzioni che mostrano l’andamento della convergenza ad 1 di 1+1/x² rispetto a 1+1/x per il calcolo del Limite.

dffdfdf

Quindi per le serie convergenti una condizione necessaria ma non sufficiente è quella di Cauchy, infatti spesso viene rinforzata da altri criteri e sono quelli della radice, del rapporto, di condensazione e di Leibniz (pt 1,3,4,5) usati a loro volta per stabilire il carattere della serie al variare del limite  0 <α  ≤1 oppure 1<α ≤+∞.
Il rapporto (pt1) è uno strumento polivalente perché esso mi dà sia informazioni sulle successioni se crescenti o decrescenti (se > o < di 1) ma anche sulla convergenza o divergenza delle serie, nonché sfrutta la decrescenza di valori tramite An+1<An per ipotesi per poi condensare il carattere della mia serie in una formula a partire da una restrizione della stessa. Di base il criterio di condensazione si usa per serie visibilmente convergenti già dall’inizio dove al numeratore abbiamo una costante che cambia di poco rispetto al denominatore, mentre il criterio della radice si avvale spesso del confronto in caso di convergenza perché se il limite della mia serie An²<α  è 0≤α<1 allora a maggior ragione An convergerà.

Il concetto di assoluta convergenza mi dice però che se il modulo delle somme della serie è assolutamente convergente allora la somma dei moduli è convergente. Questa “restrizione” dove prendo solo i valori positivi di una serie, come ad esempio in sin n, risulta indicatrice per tutti i valori della sommatoria, ma attenzione: ciò che è convergente non è detto che lo sia assolutamente, infatti basti pensare ad una serie a segno alterno dettata da per esempio (-1)^n* 1/n, dove 1/n è infinitesima all’aumentare di n ma non convergente in quanto serie armonica oltre che di riferimento.
Leibniz si avvale del rapporto di An/An+1 per dimostrare, come per le successioni, che la serie crescente sia convergente.
Pensare alla convergenza (An/An+1) come un treno in corsa ed alla crescita (1/n) come un passeggero che seppur correndo in direzione opposta, venga comunque converso.

Morale le ipotesi per il criterio di Condensazione e di Leibniz sono le medesime:

  • An > 0    ∀n
  • An ≥ An+1     ∀n

ma rispondono in maniera differente alla stessa domanda sulla natura della serie, con due sole differenza per Leibniz dove n →+∞ di An = 0 e la presenza di (-1)^n: l’elemento “sfarfallante” che obbliga la serie a tendere verso 0 sia da positivi che da negativi, dandomi informazioni sulle sottosuccessioni A2n > A2n+1, le quali rapportate al limite a cui tende il mio oggetto, rendono l’errore trascurabile al termine a2n+1 successivo qualsiasi cifra significativa io prenda in considerazione.

autumn-83761_640-696x376

Last but not least e come da ultimo esempio, ciò che per le successioni si determinano la crescita o decrescita, per le serie son la convergenza o divergenza, ed è la particolare attenzione che va quasi esclusivamente ai punti di accumulazione situati in prossimità di un limite che rendono in maniera capillare e metodico lo studio sulla convergenza stessa.

PA non solo Per Assurdo


Chi sa cos’è una PA?
In italiano si dice Analisi Predittiva ed è un processo che richiede lo sviluppo di un modello adatto per quella azienda che ha bisogno di un “aggiustamento” di fatturato, sempre in positivo, e che si avvale di big data (enormi quantità di dati) interpretati dalla figura del data analyst.
Ogni applicazione della PA è definita da due punti:

  1. Che cosa viene previsto: il tipo di comportamento (azione, evento) da prevedere per ciascun individuo
  2. Come viene utilizzato: le decisioni motivate dalle previsioni ovvero l’azione intrapresa dalle aziende in risposta alla previsione.

In pratica l’azienda B decide di alzare il fatturato o di acquisire credibilità sul mercato nel suo settore e per battere la concorrenza investe ingenti somme di denaro per l’acquisto di dati da un’altra azienda A che ne raccoglie enormi quantità proprio del settore in cui l’azienda B abbisogna; presto fatto B paga A ed A sviluppa dei modelli (o standard) differenti che la “ingrossano” a discapito della concorrenza.
Grazie ai dati raccolti negli ultimi 4 anni la “Google Flu Trends” ha sviluppato una PA dove la tendenza delle persone a cercare rimedi per l’influenza sui loro motori di ricerca ne prevede la sua diffusione; in soldoni significa che i nostri “movimenti di ricerca” sono indicatori di malattia. E’ un po’ come dire “la ricerca mi porta alla malattia” e non il contrario.
Per farvi un’idea la Pa di Yahoo! stessa ha scoperto che chi vede un banner di un’azienda ha la probabilità del 61% superiore di altre che il consumatore ci clicchi per cercare informazioni, col conseguente aumento di fatturato del 249%. Immaginate quindi la potenza di tale strumento…?
Ma veniamo alla tanto discussa app Immuni.
Il Financial Times nel 2014 scrisse “quello che manca è la teoria, la capacità di raccogliere e analizzare i dati per rispondere a domande complesse. Il problema dei “big data” non è il big, ma l’idea che la quantità possa eludere il problema dei modelli interpretativi e causali”: focus e target da implementare. Ma a smorzare tali affermazioni ci pensa “La Stampa” che riprendendo un articolo de “il Post”, sempre di quell’anno, asserisce che dal 2008 ad oggi la Google Flu Trends avrebbe comunque sbagliato di molto le previsioni sui trend influenzali: tanta gente che si fida dei medici piuttosto che di una multinazionale o perché chi cerca non ha un medico di base o forse perché l’influenza stessa non è motivo di ricerca assidua quanto un’altra cura per un’altra malattia? Non lo sappiamo, se non che da un po’ di anni a questa parte gli analisti stanno affinando le tecniche per abbassare il più possibile il margine di errore.
Abbiamo avuto l’esperienza di questo virus che ha messo in ginocchio il sistema sanitario territoriale nazionale; infatti lo (si fa per dire) scoglio per le nazioni come la nostra non è stato solo far fronte ad una crescita esponenziale di casi allestendo delle terapie intensive in ogni struttura nel minor tempo possibile, ma soprattutto di agire in maniera preventiva evitando che il paziente ci arrivasse in fase avanzata di malattia.

Presa visione della falla ed indipendentemente dalle ragioni di base che l’hanno scaturita, l’applicazione Immuni risulta un assist per le multinazionali, non solo a cedere i nostri dati, ma a calcolarne in maniera affidabile delle PA pagate a peso d’oro grazie ai dati ricavati dall’app.
Dove sta il cambio? Probabilmente nel progressivo innalzamento di credibilità ed affidabilità di Google nel prevedere dove, come l’influenza si sviluppa nel mondo e come porvi iniziale rimedio senza scomodare il medico di base con la proporzionale decrescita di professionisti del settore sanitario territoriale?

Potrebbe essere un’ipotesi.

Bibliografia e riferimenti:
Eric Siegel – Analisi Predittiva
https://cristinacenci.nova100.ilsole24ore.com/2014/04/06/google-flu-trends-big-data-senza-big-theory/?refresh_ce=1
https://www.lastampa.it/opinioni/editoriali/2014/03/18/news/l-influenza-non-si-cura-con-google-1.35778856

 

 

#E4 – An – Funzioni, Successioni con 2 Carabinieri: fuNerali Astratt1


IMG_20181209_164524

  1. questa successione ha come numeratore la parte intera [] di logx che è una funzione che associa ad ogni x∈R la sua parte intera minore o uguale in N (es: 2,3=2.  4,8=4. 3=3). 
    Detto questo sostituisco all’intera la lettera q che elevata alla n mi identifica la funzione di entità geometrica.
    Sappiamo inoltre che per sapere se una successione converge dobbiamo mettere il modulo <1 (attenzione il modulo e non la serie stessa perché consideriamo sempre i valori positivi della funzione).
  2. sviluppando questo tipo di ragionamento, mettendo sia il modulo positivo che negativo della serie <1, ottengo che la [funzione] esiste in (-2,2) esclusi perché il 2 al denominatore l’ho portato su sia a dx che a sx
  3. se il log di x(argomento) è in base e ⇒ x è compreso tra e elevato alla -1 e 2 visto che la parte intera -1 (eˆ-1 = 1/e = 1/2,71828 … =0,367879 …) 

img_20181209_164524-e1544372973369.jpg
IMG_20181209_164524
img_20181209_1645242.jpg

  1. 4) per q≠0 e 1 direi anche posso verificarne la somma. infatti la q la posso scomporre in prodotto di due q sommandone gli esponenti
  2. 5) qˆn lo posso portare fuori dalla sommatoria lasciando sotto qˆm. In realtà questo passaggio di mezzo potrebbe fuorviare l’attenzione, ma basta guardare che il qˆk che moltiplica la sommatoria di un (q)ˆn-k dà esattamente ciò che c’è scritto nel punto 6; è un po’ come fare (2)ˆ2 = (2)ˆ3-1!
  3. 6) quindi prendo in considerazione soltanto le sommatorie che da n=2→∞ e cioè quella che mi definisce il limite della serie.

Esercizi 2 e 3

img_20181209_164551-e1544377813300.jpg

  1. ricorda vagamente il limite notevole di e quindi la serie stessa sembra suggerirmi la strada. per prima cosa ribalto 2/n ottenendo il reciproco; poi scompongo n=1*n= n/2*2/n (che fa 1) * n
  2. a questo punto i giochi son fatti perché per ottenere e basta avere sia al denominatore che all’esponente la stessa cifra
  3. infatti eˆ(2/n)*n = eˆ2 😉

img_20181209_1645511.jpg

  1. sembra che tutta la successione vada a +∞ ma in questo limite, dove so che n tende a +∞ il termine da studiare è senza dubbio sinπ, che è una funzione che sta tra [-1,1]
  2. capito il contesto in cui agire i famosi 2 carabinieri mi portano il lim della mia funzione sinπ →0 

img_20181209_201340.jpg

  1. A) per k=1 la successione tende a 1 e non a 0 (n/n) quindi non converge
  2. B) per k=3 invece con il criterio dell’assoluta convergenza, che grazie al valore assoluto elimino l’elemento disturbante (-1)ˆn, riesco a determinarne l’assoluta convergenza con il confronto asintotico
  3. C) il caso k=2 è particolare, perché sostituendolo mi risulterebbe un confronto asintotico che mi porta la successione a divergere verso +∞. In questo caso posso chiamare in causa il criterio di Leibniz la cui presente successione ne rispetta i presupposti:
    – An→0, per n→+∞
    – An≥0ora devo solo porre An+1 ≤ An ed i calcoli mi portano ad un risultato definitivamente positivo, cioè oltre al Δ/2 della formula finale dove la successione converge debolmente a +∞. 😉

#8An – l’importanza delLa Frontiera


se Accumulazione E'

Espressione Canonica:   ∂A ∪ A°c

  • A°: punti interni ad A
  • ∂A: la frontiera di A
  • A°c: punti interni all’insieme complementare Ac

immagino il seguente intervallo A: [0,1]
lo 0 è incluso nell’intervallo e rappresenta non solo il lim.inf. ma anche minimo e minorante, mentre l’1 è lim. sup., massimo e maggiorante 

A°complementare è (-∞,0) ∪ (1,+∞) = Ac

(1/n, n/n+1) è una copertura non adatta perché sostituendo una n arbitrariamente grande l’intervallo (0,1) si allarga sempre più senza raggiungere i punti estremi, quindi per coprirlo dovrei scrivere {0}∪(1/n, n/n+1)∪{1}; posso formare una sottocopertura di n finiti intervalli, per esempio: (-1/3,1/3)∪(0,1)∪(2/3,4/3). In questo modo lo rendo compatto 

è semplice capire che all’aumentare di n la funzione tende a sx a 0 ed a dx ad 1 rendendo le frontiere ∂A dei punti di accumulazione (A’) 

Grazie al teorema di comprensione metrica #An 7 so che un punto di accumulazione è quella bolla di punto p e di raggio r che intersecata con E ha al suo interno (per qualsiasi raggio ε>0) infiniti punti x∈E; inoltre i punti di accumulazione appartengono sempre alla frontiera ∂A che nel nostro caso [0,1] è interna all’intervallo rendendolo Chiuso!

  • La copertura (1/n, n/n+1) è aperta 
  • l’intervallo [0,1] è chiuso
  • la sottocopertura (-1/3,1/3)∪(0,1)∪(2/3,4/3) è di numero limitato
  • ⇒ A è compatto

#An7 Teorema di comprensione metrica


Legenda: 

  • p = punto
  • ∂E = frontiera di E
  • E’ = insieme derivato ovvero insieme dei punti di accumulazione di E 
  • Ec = insieme complementare di E

Qualsiasi insieme E ⊆ X (in R^n) abbiamo che E∪∂E ⇔ E∪E’

dimostriamo per prima ⇒ :

E∪∂E ⇒ E∪E’: dall’enunciato è sicuro che p∈ E, ma se appartenesse ad E e basta non avrebbe senso l’implicazione stessa, quindi  possiamo ipotizzare che ∉ E. questo significa che p∈ ∂E∩E’  

  1. p∉ E, questo significa che sta nella frontiera ∂E
  2. stare nella frontiera ∂E significa due cose: o essere isolato, oppure di accumulazione
  3. essere isolato non porta alla risoluzione quindi
  4. se p∈E’ allora ∃ un punto q≠p t.c q stia all’interno della bolla B(p,r), il che equivale a dire che E∪∂E ⇒ E∪E.

e per seconda:

E∪E’ ⇒ E∪∂E: se so che

  1. p∈E’ 
  2. essere di accumulazione significa stare sulla frontiera sia di E che di Ec t.c ∂E=∂Ec allora
  3. p∂E il che prova E∪E’ ⇒ E∪∂E

Conclusioni

  1. se E∪E’ è chiuso ⇒ Ec aperto
  2. se E∪E’ è aperto ⇒ Ec chiuso

tutto dipende dalla frontiera se è inclusa o no nell’intervallo

Considerazioni sulla risoluzione di esercizi sul campo di Gauss


Sun Tzu diceva “colui che capisce quando è il momento di combattere e quando non lo è, sarà vittorioso”, anche se senza dubbio cavarsela con calcoli più o meno complicati dà soddisfazione.

La frase è tanto bella e piena di significato solo per chi di calcoli ne ha fatti a tonnellate ed accertato che, per sapere quando combattere bisogna per lo meno esser scesi in campo, vedere che aria tira e sbattere la testa in continuazione per cavarne una soluzione decente, la strada del sapere “quando” scendere rischia di diventare non una battaglia ma una vera e propria guerra a volte troppo dura.

 Se parliamo poi di numeri complessi, che ahimè si affrontano solo a fine percorso semi-obbligatorio per non dire universitario, allora la faccenda diventa complicata.

un po’ di consigli pratici

  • z = (x+iy)
  • |z|=√x²+y² , che corrisponde alla lettera greca ρ (rho) ed è una distanza in C dal centro (0,0)
  • iz = ruoto di π/2 in senso antiorario il punto z
  • -iz = ruoto di π/2 in senso orario il punto z
  • 1/z * zc/zc = zc/|z|² —> moltiplicando N e D per zconiugato ottengo al N zconiugato ed il quadrato del modulo al D 
  • z*zc = |z|²
  • |z-1-i| ricordatevi che è uguale a |z-(1+i)|, cioè 1+i=w, altro numero complesso; tutto può essere tradotto come |z-w|=|z|-|w|
  • per esempio z²³, quindi z alte, usate la forma esponenziale: elevate il modulo e moltiplicate l’argomento per 23
  • √z<0 ha comunque 2 soluzioni 
  • i²¹ ricordarsi che dopo i^4 i risultati si ripetono
  • u=1/z è quasi sempre una circonferenza

 

#5AN sp4zio M3tric0


  1. Sia p∈Q e p∈I, I =numeri irrazionali e quindi complementare di Q ⇒ ∂Q = ∂I = R

Questo è sempre vero perché in una bolla B(p,r) (punto p e raggio r) la distanza d(p-r,p+r) avrà sempre dei punti razionali/irrazionali che apparterranno all’elemento di frontiera di uno o dell’altro insieme(Q ed I), conseguentemente è vero anche

2) il punto di frontiera ∂ ∃ necessariamente in Q∩I

glass-ball-1813707_960_720-e1541271483473.jpg

3) un punto o è di accumulazione o è isolato

un punto isolato significa 0<s<min[d(p,xn)]. Senza disegno immaginatevi che il punto p∈A sia una bolla di raggio s; e che questo s sia minore del minimo della distanza tra il suo centro p ed un centro di un’altro elemento x preso n finite volte ad esempio 6. Da qui ne consegue che

4) Se A è finito ⇒ A’ finito (e viceversa)

dove A’ è l’insieme dei punti di accumulazione o insieme derivato.

img_56431-e1519639041130.jpg

5) A è chiuso ⇔ A’ ⊆ A

(X,d) metrico, ed A’ è l’insieme dei punti di accumulazione. Abbiamo la nostra bolla B(p,r) ed un nostro elemento x preso all’interno dello spazio metrico stesso. Ora ricordate il punto 3? Se il raggio della bolla B(p,r) era > della distanza minima d(p,xn) allora si aveva un punto di accumulazione? Bene se questo punto è un sottoinsieme di A allora A è chiuso ed Ac è aperto, altrimenti viceversa.
Ad esempio pensate all’insieme

E = {x∈X : d(p,x) <4}    ed il suo complementare    Ec = {x∈X : d(p,x) ≥4}

Qualsiasi punto p che prenda all’interno di E, per quanto vicino possa essere all’estremo superiore 4, il suo raggio non lo raggiungerà mai; questa fa sì che 4 sia un punto di accumulazione che ∉ E ma bensì al suo complementare che lo include col segno ≥. Perciò l’insieme derivato E’⊆Ec, ed Ec è chiuso, mentre E è aperto.

W.Szymborska-cop

6) Â = A ∪ A’       si chiama chiusura di A

esempi sono:

  • A = Q   ⇒   Â = R 
  •  Â = B(p,r) = {x∈Rˆn : ||p – r||≤ r }, che è l’unione degli insiemi E ed Ec

La chiusura possiede delle proprietà ovvie riferite anche a famiglie di insiemi e le loro unioni ed intersezioni, quindi considerano uno aspetto più ampio.

diamA = sup d(x,y)  oppure  diamA =  supA – infA      per      x,y ∈ A

immaginate due punti su di una retta R e prendete gli estremi superiori. La distanza che ne intercorre è il diametro dell’insieme A.

Se A< +∞ ⇒ A è limitato
Se diamA = 0    ⇒    A = {a}   elemento singolo

  • se l’elemento singolo è l’insieme A  ⇒ supA – infA = 0
  • se supA – infA ≠ 0 ⇒ ∃ε>0 che funge da gap per almeno i due punti estremi del diamA! In questo caso abbiamo che diamA ≤ sup d(x,y) dove x ed y sono B(x,r) e B(y,s), ne consegue che
  • diamA = diamÂ, dove supA – infA – 2ε < sup d(x,y) 
bibliografia
analisi matematica - soardi

#4AN pulizie Autunnali: retta, Parabola, ellisse, Iperbole e circonferenza


Equazione della Retta:

ax + by + c = 0       con       a,b,c ∈R,

oppure     y = mx + q   con   coefficiente angolare (m) e intercetta all’origine (q)

schermata-2018-11-03-alle-19-15-34.png

Equazione della Parabola:

y = ax + bx + c = 0     con      a≠0

Schermata 2018-11-03 alle 19.23.00

Equazione dell’ellisse:

x²/a² + y²/b² = 1

Schermata 2018-11-03 alle 19.28.59

Equazione dell’iperbole:

x²/a² – y²/b² = 1     con    a>0, b>0

Schermata 2018-11-03 alle 19.41.47

Equazione della circonferenza:

x² +  y² + ax + by + c = 0       oppure      √(x−α)² + (y−β)² = √r²

Schermata 2018-11-03 alle 19.45.35