Natura di Serie Topologica

il

 

 

Chiunque voglia sinceramente la verità è sempre spaventosamente forte

Dostoevkij non era un matematico, ma in quanto artista riconosceva l’uomo e la sua forza nel trovare comunione tra tutte le foto soprastanti con la formula generale della progressione; dal cavolo romanesco alle conchiglie ciò che noi vediamo ed i matematici codificano in linguaggio è una spirale, più o meno ampia ma coerentemente in armonia agli occhi dell’osservatore.

Cosa abita dietro a tanta armonia? Formule, tanto per cambiare!

hqdefault.jpg
serie aritmetica di n numeri per n che tende a + infinito

 

formula_letts_02350_006.jpg
serie geometrica q^n

 

Occupiamoci della seconda cioè della serie geometrica q^n che per la cronaca è la serie che codifica per strutture frattali come il cavolo romanesco.
A confrontare la foto con la formula sembrano non esserci punti di connessione ma se partissimo dal centro e tracciassimo con un pennarello il raggio che dall’origine della spirale esce su lungo tutto l’ortaggio, ad ogni cuspide che si interseca avremmo un q; questo procedimento reiterato allontanandoci dal centro ci fornisce una successione di q1,q2,q3,q4,…,qn-volte che sommate fra loro danno la formula astratta. Sebbene ogni n equivalga al logaritmo in base e di x, le somme parziali di tutti i q^n che incontriamo fino all‘n-esimo corrispondono alla stima della suddetta serie geometrica, la quale viene identificata tale perché l’esponente n segue una progressione del tipo:

  • e  + (e*e) + (e*e*e) + (e*e*e*e) + (e*e*e*e*e) + ….        per  e=q
  • e¹ +   e²   +     e³      +    …..           n,                          per n →∞
  • il carattere della serie che è dato dal lim per n →+∞ di eˆn = x che risulta >1 quindi divergente a +∞ (log in base e di x = n)

Come ci si è arrivati a tale risultato è descritto qui sotto

IMG_20181207_172205.jpg

 

  • ho moltiplicato per q la serie per tutti i termini fino ad arrivare al termine n-esimo maggiorandolo a +1
  • in C ho effettuato sia a dx che a sx la sottrazione Sn – qSn, che semplificando termine a termine
  • in D raccolgo a sx Sn
  • al 6 porto sotto (1-q). il risultato può essere visto come una sottrazione di due numeri razionali dove il secondo (quello con l’esponente n+1) corrisponde alla serie “trascurabile” ai fini del calcolo del limite per identificarne la convergenza
Schermata 2018-12-06 alle 23.59.08

[nella figura è leggermente divergente perché il lim per n →+∞ di eˆn = x = k  che risulta >1;
x = r che aumenta alla rotazione del punto p di distanza OP dal centro. La rotazione è data da kθ = ln r; mentre il modulo |r| ne è la distanza] 

Vale la pena spendere anche due parole sulla prima di serie che si identifica in {1+2+3+4+5+6+7+8+9+ …. +x} dove in questo caso i raggi di ogni braccio dell’aspirale sono a distanza costante di 1 l’un l’altro ed il ln di 1 è sempre “e”

Schermata 2018-12-06 alle 23.59.58
spirale di raggio costante n

Parlando di serie si identifica cosa sta dietro ad una spirale, al suo comportamento ed al carattere che mostra, ma i punti sono inseriti in una realtà tridimensionale dove ne fa da padrona anche il campo complesso con prodotti scalari, quindi la faccenda è molto più complicata se dovessimo spostarci da un punto di raggio più piccolo del II quadrante ad uno di raggio 8 volte tanto o 16000 volte più grande del III quadrante in.
Sta di fatto che dobbiamo a Gauss (ma non solo), l’inventore della prima formula dell’articolo [S=n(n+1)/2 per n→∞], se oggi riusciamo a concepire una metrica in modo coerente ed universale su tutte le forme esistenti conosciute … con una propensione verso il limite per capirne il comportamento 😉

 

 

 

 

 

 

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...