Considerazioni sulla risoluzione di esercizi sul campo di Gauss

il

Sun Tzu diceva “colui che capisce quando è il momento di combattere e quando non lo è, sarà vittorioso”, anche se senza dubbio cavarsela con calcoli più o meno complicati dà soddisfazione.

La frase è tanto bella e piena di significato solo per chi di calcoli ne ha fatti a tonnellate ed accertato che, per sapere quando combattere bisogna per lo meno esser scesi in campo, vedere che aria tira e sbattere la testa in continuazione per cavarne una soluzione decente, la strada del sapere “quando” scendere rischia di diventare non una battaglia ma una vera e propria guerra a volte troppo dura.

 Se parliamo poi di numeri complessi, che ahimè si affrontano solo a fine percorso semi-obbligatorio per non dire universitario, allora la faccenda diventa complicata.

un po’ di consigli pratici

  • z = (x+iy)
  • |z|=√x²+y² , che corrisponde alla lettera greca ρ (rho) ed è una distanza in C dal centro (0,0)
  • iz = ruoto di π/2 in senso antiorario il punto z
  • -iz = ruoto di π/2 in senso orario il punto z
  • 1/z * zc/zc = zc/|z|² —> moltiplicando N e D per zconiugato ottengo al N zconiugato ed il quadrato del modulo al D 
  • z*zc = |z|²
  • |z-1-i| ricordatevi che è uguale a |z-(1+i)|, cioè 1+i=w, altro numero complesso; tutto può essere tradotto come |z-w|=|z|-|w|
  • per esempio z²³, quindi z alte, usate la forma esponenziale: elevate il modulo e moltiplicate l’argomento per 23
  • √z<0 ha comunque 2 soluzioni 
  • i²¹ ricordarsi che dopo i^4 i risultati si ripetono
  • u=1/z è quasi sempre una circonferenza

 

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...