#A11 -E2: Induzione Geometrica

un esempio facile di metodo di induzione visto dal punto di vista geometrico.

Si ha il seguente enunciato: Dimostrare che la somma degli angoli interni di un poligono di n lati equivale a (n-2)*180° angoli piatti. 

Riscriviamo la Proposizione P meglio:

  • P(n) = la somma degli angoli interni di un triangolo di n lati 
  • (n-2)*180 = angoli piatti

quindi abbiamo che P(n) = (n-2)*180 

  1. troviamo se P(0) è vera
    Se pensiamo al quadrato, come poligono di 4 lati e sostituiamo la n col 4 avremo
    (4-2)*180° = 2*180° = 360°
    Stessa cosa col pentagono, n = 5 avremo (5-2)*180 = 540° … ecc quindi banalmente per ogni sostituzione di n P(n) è sempre vera.
  2. Se P(n) vera ⇒ P(n+1) sarà vera?   Ipotesi (I)
  3. Quindi P(n+1) = P(n) + 180°, perché? Perché se aggiungo un lato al poligono iniziale è come se aggiungessi un angolo di 180°   Tesi (T)

img_20180922_201417.jpg

  1. P(n) + 180 = [(n-2) * 180] +180   
  2. {[(n-2)*1]+1}  *180 , ho raccolto il 180 tra le quadre e graffe
  3. ma banalmente [(n-2)*1] +1 = (n-2)+1 e tutta l’espressione [(n-2)+1]  è P(n)+180 = P(n+1) la Tesi (T) 

Il metodo di induzione è un metodo diretto di dimostrazione.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...