#15a l’Ipotesi sui numeri Reali

La cardinalità del continuo R coincide con la cardinalità dell’insieme delle parti dei numeri Naturali N, cioè |R|=|P(N)|

Questo teorema annuncia un importante salto concettuale per la cardinalità generale ma soprattutto sulla numerabilità degli elementi di un insieme in quanto apre le porte all’idea di “diversi infiniti” l’uno dentro l’altro.

N = {0,1,2,3,4,5,6,7 … ∞}
Z = {1,-1,2,-2,3,-3,4,-4,5,-5 … ∞} sembra più grande di N

Q = {1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 2/4, 3/3, 4/2, 5/1 …  ∞}

img_20180424_101119_resized_20180424_101153811.jpg

La numerabilità dei razionali Q segue un percorso diverso scoperto da Cantor che sta nella tabella soprastante

ma per i numeri Reali?
Ebbene non si possono numerare perché non hanno una corrispondenza con l’insieme N in quanto seguendo molteplici schemi (come nell’esempio di Cantor) ci si è accorti che esiste sempre una numero diverso che non avevamo contato tra un numero l’altro, quindi l’infinito numerabile degli interi è diverso l’infinito non numerabile del continuo. Non solo: esso possiede una cardinalità più grande!
Ipotizziamo di avere due partizioni x∈R1 e y∈R2 (sezione di Dedekind) in cui esiste una relazione d’ordine ; la loro unione porta ad avere tutto Q ed una funzione iniettiva per lemma di Zorn che va da R1 a Q. Con queste premesse possiamo stabilire una relazione d’ordine |R|≤ |P(Q)|

img_5753-e1524662732191.jpg

inoltre P(Q) in quanto numerabile è riconducibile ai numeri naturali e quindi possiamo anche scrivere P(Q) = P(N) = 2^N (per un insieme di soli 2 elementi)

Se tutto |R| = |N|∪|P(N)| allora |R|≤|P(N)|, iniettiva per scelta di una delle due partizioni come da esempio sottostante

img_5754.jpg

tramite il teorema di Hartogs si può arrivare alla considerazione più plausibile: |R|=|P(N)|

Le dimostrazioni dei casi specifici sono lasciate al metodo di induzione per “riempire” il gap tra  |R|≤|P(N)|  e  |R|=|P(N)|

Bibliografia 
Dikran Dikranjan 
Maria Silvia Lucido – Aritmetica e Algebra 
Barbieri Viale - Che cos'è un numero 
Carl B.Boyer - storia della matematica 
Marco Manetti - Topologia

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: