#A8-#E

il

IMG_5746

Nel primo esercizio basta notare le analogie che stanno nell’uguaglianza dei due coefficienti per capire che forse è inutile stare a trasformare le permutazioni, quindi bastano pochi passaggi algebrici per capire che la soluzione è più vicina di quanto sembri

Nel secondo esercizio le condizioni di esistenza devono essere x≥4, quindi al primo passaggio sostituiamo la formula base coi valori dei seguenti coefficienti binomiali. Poi permutiamo il 4 al primo denominatore così lo si elimina; sotto permutiamo invece la serie x! per eliminare il (x-4)! sempre al den., mentre al di là dell’uguale facciamo lo stesso con (x-3)!
semplifichiamo algebricamente i fattori comuni, moltiplichiamo lo stesso denominatore *6 così lo possiamo eliminare per trovarci con un semplice passaggio ad x-3=5, x=8 che è ≥4 

img_5734-e1522265310583.jpg

Al primo passaggio attuiamo la sostituazione alla formula madre n! / k!(n-k)!. nb. la seconda freccia verde in alto: sostituzione di k-1 e n-1 alla k di (n-k)! risulta [n-1-(k-1)]! cioè  [n-1-k+1]! quindi (n-k)!

So che (n-k)! = (n-k)(n-1-k)! e sostituisco
so che k! = k(k-1)! e sostituisco

effettuo il denominatore comune al penultimo passaggio e semplificando mi ritrovo la formula iniziale n! / k!(n-k)!
uguaglianza verificata con successo

 

 

 

Un commento Aggiungi il tuo

  1. Nepero ha detto:

    dimostrazione generica fattoriale

    Mi piace

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...