#9a principi: Minimo, buon Ordinamento e Gap logico di comprensione insiemistico/algebrica

Riferendoci sempre a Peano ci sono 2 principi che introducono le relazioni tra numeri naturali N di uno stesso insieme e sono:

  • Principio del Minimo 
  • Principio del Buon Ordinamento

Il principio del Minimo dice che se abbiamo una terna di Peano (N,s,e)  – s = successivo e = 0 –  sarà sempre concepito un elemento minimo tale che n≤m per ogni n,m ∈ X

{¥ m∈X ∃ n∈X : n≤m}

la dimostrazione è più discorsiva, infatti supponiamo di avere un insieme non vuoto X di numeri naturali senza un elemento minimo ed un insieme Y con altrettanti numeri naturali strettamente < minori di X. Facendo riferimento alla terna Y deve contenere per forza 0, n ed un suo successore s(n) che, non avendo una situazione tale che n ≤ z ≤ s(n), deve per forza far parte di X in quanto elemento minore dell’insieme X stesso. Questo afferma che Y fa parte di dell’insieme dei numeri N e che X risulta addirittura disgiunto da Y, ipotesi assurda in quanto in Y esiste s(n) cioè il minimo elemento in X. 

Separatore-Grigio.png

Il Principio del buon Ordinamento gioca anch’esso di logica sostituendosi al Principio di Induzione e viceversa. vediamo come:

Partendo dal PDI alla visione di De Morgan supponiamo A ⊆ N non abbia un elemento minimo e dimostriamo che A=∅.
Supponiamo lo 0 sia in A, ma se è in A allora non è in N\A,
Quindi se è vera per 0 sarà vera anche per n+1? Se in N\A abbiamo numeri naturali che da 0 arrivano ad n ⇒ n+1 si trova in A come elemento minimo. assurdo!
quindi A è per forza vuoto

Separatore-Grigio.png

Tralasciando la Relazione d’ordine ≤ in N ipotizziamo di avere una n∈N diversa da 0 e 1 ed una funzione S=successivo = x+1 

img_5690.jpg

va da se per induzione che se sommo a x+1 + n-1 le due funzioni S che dall’insieme X vanno in Y (appartenenti sempre all’insieme dei numeri Naturali N) mi codificano come principio del minimo dell’insieme Y. In “simbologia insiemistica” è spiegato meglio in rosso come l’unione/somma dell’insieme singoletto {x}∪x=S(x)
La foto sottostante sono 3 modi per spiegare lo stesso concetto induttivo

img_5688.jpg

Tramite questo procedimento si possono dimostrare le proprietà aritmetiche che governano i numeri e che sono:

  • commutativa
  • associativa
  • distributiva della somma rispetto al prodotto
Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica

 

Info Simone
matematico, imprenditore, musicista

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

Nepero

storie di teoremi reietti tra pensiero, spazio-tempo e natura

The Art of Blogging

For bloggers who aspire to inspire

Paolo Sassaroli - E - BOOK

Entra nel mondo delle pseudo favole di Paolo Sassaroli

ilripassinodimatematica

navigando tra le nuvole del pensiero matematico

Enterprises...

..."alla ricerca di nuove forme di vita e di civiltà, fino ad arrivare là dove nessuno è mai giunto prima"

AstronomicaMens

Le idee degli scienziati sull'Universo

Emozioni: idee del cuore

Raccontare le emozioni, attraverso il battito del cuore, perché la felicità è nascosta ma se troviamo la bussola scopriamo la strada giusta

OggiScienza

La ricerca e i suoi protagonisti

"Matematicandoinsieme" di Maria Cristina Sbarbati

La fantasia è più importante del sapere!

%d blogger hanno fatto clic su Mi Piace per questo: