#4a leggi di De Morgan

Le leggi di De Morgan sono un’ottimo esercizio d’astrazione in quanto scambiano i valori di unione ed intersezione prendendo un’ipotetico insieme più grande (universo) X che contiene strettamente gli altri 2: (A,B ⊂ X).

sole-luna.jpg

ps. strettamente perché ∃x che appartengono all’insieme universo X a prescindere dalla relazione dei due sottoinsiemi A e B

pps. analogo esempio è per A∩B

img_5636.jpg

^c = complementare = riga 2 e riga 3 sono la stessa uguaglianza
X = insieme universo

L’ultima riga si traduce come L’insieme universo meno l’unione dei sottoinsiemi della famiglia Ai (dove i appartiene all’insieme degli Indici) = all’intersezione dell’insieme universo meno tutti i sottoinsiemi della famiglia Ai (dove i appartiene all’insieme degli Indici) 

Bibliografia
Dikran Dikranjan Maria Silvia Lucido – Aritmetica e Algebra
Barbieri Viale - Che cos'è un numero
Carl B.Boyer - storia della matematica

 

Un pensiero riguardo “#4a leggi di De Morgan

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...