Criteri feat Congruenze

Contro qualcosa di insormontabile la matematica ci può dare una forte mano a comprendere ciò che abbiamo davanti, generalizzando in dinamiche che vanno ben oltre al caso particolare.

Con criterio di divisibilità io separo e trascelgo che per arrivare ad un risultato ho bisogno di un metodo il più possibile ordinato, efficace e che vada bene per ogni situazione. E’ un primo passo verso l’astrazione, ma se risponde alla domanda giusta diventa decisivo anche ai fini risolutivi.
Dobbiamo avere chiari due concetti prima di procedere: congruenza e notazione scientifica.
Ogni numero può essere scritto in notazione scientifica decimale: 2.750 = 2(10^3)+ 7(10^2)+5(10) ed ogni coppia di numeri possono essere congrui modulo x: 12 (mod5) e 22 (mod5) danno resto 2 (12:5=2 resto 2, 22:5=4 resto 2).
Perché sono importanti questi argomenti?
Nella vita può capitarmi un piccolo problema come dividere 25; ma se mi capitasse 3.162.819?
Il nostro numero non è altro che la sommatoria di più cifre scritta in notazione scientifica nella base più comoda e che tutti conosciamo: base 10

img_5248.jpg

Ad un tratto arriva il professore, la brutta notizia, l’imprevisto e ti mette nei guai  chiedendo “bene: dividimelo per 11!”
Qui entrano in sinergia, con la notazione scientifica, le proprietà della congruenza che non differiscono dalle leggi aritmetiche:

IMG_5273
il prodotto dei resti segue le leggi aritmetiche: 1*-1=-1 ed -1*-1=1

Il segno alternato della congruenza dà un importante spunto sul metodo da esplorare  con le cifre del nostro numero; infatti se eseguo la sommatoria delle congruenze ed ottengo sempre 0, allora, rifacendo tale procedimento con le cifre del mio numero e tralasciando l’ordine di grandezza (10^n), dovrei ottenere un risultato che diviso per 11 mi dà 0!
Vediamo: (-1*3) + (+1* 1) + (-1*6) + (+1*2) + (-1*8) + (+1*1) + (-1*9) = – 22 / 11 = – 2
resto 0

Osservazioni:
Sapere un criterio di divisibilità significa studiare a priori ciò che abbiamo davanti prima ancora di approcciarci ad esso, osservando e capendone le caratteristiche; citando una celebre frase di Omero che diceva “Niente è bello sotto tutti i punti di vista”, possiamo, in questo caso, vedere tale numero acquisire importanza se visto come sommatoria numerica e non come ordine di grandezza, consapevoli del fatto che la mente associa per sua natura ed abitudine.

In conclusione grazie alle congruenze in base 10 troviamo il criterio di divisibilità di qualsiasi numero. I resti che si ripetono ciclicamente, es. +1-3+2+1-3+2+1-3+2 ecc. saranno i coefficienti da moltiplicare all’ordine di grandezza del numero da dividere.

IMG_5289

ma sappiate che questa è solo una delle tante strade percorribili … 😉

 

BIBLIOGRAFIA:
CARL B.BOYER – STORIA DELLA MATEMATICA
RICHARD COURANT E HERBERT ROBBINS – CHE COS’È LA MATEMATICA

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: